메뉴 건너뛰기




Volumn , Issue , 2007, Pages 340-349

Enhanced max margin learning on multimodal data mining in a multimedia database

Author keywords

Image annotation; Image retrieval; Max margin; Multimodal data mining

Indexed keywords

ENHANCED MAX MARGIN LEARNING (EMML); IMAGE ANNOTATION; MAX MARGIN; MULTIMODAL DATA MINING;

EID: 36849084062     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1281192.1281231     Document Type: Conference Paper
Times cited : (13)

References (23)
  • 1
    • 84858492581 scopus 로고    scopus 로고
    • http://www.fruitfly.org/.
  • 6
    • 33749237544 scopus 로고    scopus 로고
    • Semi-supervised learning for structured output variables
    • Pittsburgh, PA
    • U. Brefeld and T. Scheffer. Semi-supervised learning for structured output variables. In Proc. ICML, Pittsburgh, PA, 2006.
    • (2006) Proc. ICML
    • Brefeld, U.1    Scheffer, T.2
  • 8
    • 14344264952 scopus 로고    scopus 로고
    • A graphical model for protein secondary structure prediction
    • Banff, Canada
    • W. Chu, Z. Ghahramani, and D. L. Wild. A graphical model for protein secondary structure prediction. In Proc. ICML, Banff, Canada, 2004.
    • (2004) Proc. ICML
    • Chu, W.1    Ghahramani, Z.2    Wild, D.L.3
  • 9
    • 34547151997 scopus 로고    scopus 로고
    • Toward bridging the annotation-retrieval gap in image search by a generative modeling approach
    • Santa Barbara, CA
    • R. Datta, W. Ge, J. Li, and J. Z. Wang. Toward bridging the annotation-retrieval gap in image search by a generative modeling approach. In Proc. ACM Multimedia, Santa Barbara, CA, 2006.
    • (2006) Proc. ACM Multimedia
    • Datta, R.1    Ge, W.2    Li, J.3    Wang, J.Z.4
  • 12
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. In Maching Learning, volume 37, 1999.
    • (1999) Maching Learning , vol.37
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 36849087518 scopus 로고    scopus 로고
    • H. D. III and D. Marcu. Learning as search optimization: Approximate large margin methods for structured prediction. In Proc. ICML, Bonn, Germany, 2005.
    • H. D. III and D. Marcu. Learning as search optimization: Approximate large margin methods for structured prediction. In Proc. ICML, Bonn, Germany, 2005.
  • 14
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML, 2001.
    • (2001) Proc. ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 15
    • 0000747663 scopus 로고    scopus 로고
    • Maximum entropy ma,rkov models for information extraction and segmentation
    • A. McCallum, D. Freitag, and F. Pereira. Maximum entropy ma,rkov models for information extraction and segmentation. In Proc. ICML, 2000.
    • (2000) Proc. ICML
    • McCallum, A.1    Freitag, D.2    Pereira, F.3
  • 16
    • 0031334889 scopus 로고    scopus 로고
    • An improved training algorithm for support vector machines
    • Amelia Island, FL, Sept
    • E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector machines. In Proc. of IEEE NNSP'97, Amelia Island, FL, Sept. 1997.
    • (1997) Proc. of IEEE NNSP'97
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 19
    • 31844442382 scopus 로고    scopus 로고
    • Learning structured prediction models: A large margin approach
    • Bonn, Germany
    • B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction models: A large margin approach. In Proc. ICML, Bonn, Germany, 2005.
    • (2005) Proc. ICML
    • Taskar, B.1    Chatalbashev, V.2    Koller, D.3    Guestrin, C.4
  • 21
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • Banff, Canada
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In Proc. ICML, Banff, Canada, 2004.
    • (2004) Proc. ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 23
    • 78651400215 scopus 로고    scopus 로고
    • Multimodal metadata fusion using causal strength
    • Hilton, Singapore
    • Y. Wu, E. Y. Chang, and B. L. Tseng. Multimodal metadata fusion using causal strength. In Proc. ACM Multimedia, pages 872-881, Hilton, Singapore, 2005.
    • (2005) Proc. ACM Multimedia , pp. 872-881
    • Wu, Y.1    Chang, E.Y.2    Tseng, B.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.