메뉴 건너뛰기




Volumn 3730 LNCS, Issue , 2005, Pages 172-212

An overview and classification of adaptive approaches to information extraction

Author keywords

[No Author keywords available]

Indexed keywords

DATABASE SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS; QUERY PROCESSING; TEXT PROCESSING;

EID: 36849063737     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11603412_6     Document Type: Conference Paper
Times cited : (12)

References (59)
  • 2
    • 84947764450 scopus 로고    scopus 로고
    • A trainable message understanding system
    • A. Bagga and J. Y. Chai. A trainable message understanding system. In CoNLL, pages 1-8. 1997.
    • (1997) CoNLL , pp. 1-8
    • Bagga, A.1    Chai, J.Y.2
  • 5
    • 2342598419 scopus 로고    scopus 로고
    • Bottom-up relational learning of pattern matching rules for information extraction
    • M. E. Califf and R. J. Mooney. Bottom-up relational learning of pattern matching rules for information extraction. Journal of Machine Learning Research, 4:177-210, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 177-210
    • Califf, M.E.1    Mooney, R.J.2
  • 7
    • 62749126138 scopus 로고    scopus 로고
    • The use of word sense disambiguation in an information extraction system
    • J. Y. Chai and A. W. Biermann. The use of word sense disambiguation in an information extraction system. In AAAI/IAAI, 1999.
    • (1999) AAAI/IAAI
    • Chai, J.Y.1    Biermann, A.W.2
  • 11
    • 10244272212 scopus 로고    scopus 로고
    • Automatic template creation for information extraction, an overview
    • Technical report, University of Sheffield
    • R. Collier. Automatic template creation for information extraction, an overview. Technical report, University of Sheffield, 1996.
    • (1996)
    • Collier, R.1
  • 14
    • 36849079701 scopus 로고    scopus 로고
    • L. Eikvil. Information extraction from World Wide Web - A survey. Technical Report 945, Norwegian Computing Center, 1999.
    • L. Eikvil. Information extraction from World Wide Web - A survey. Technical Report 945, Norwegian Computing Center, 1999.
  • 16
    • 0004289791 scopus 로고    scopus 로고
    • C. Fellbaum, editor, MIT Press, Cambridge, MA
    • C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA, 1998.
    • (1998) WordNet: An Electronic Lexical Database
  • 17
    • 0032119668 scopus 로고    scopus 로고
    • The hierarchical hidden Markov model: Analysis and applications
    • S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden Markov model: Analysis and applications. Machine Learning, 32(1):41-62, 1998.
    • (1998) Machine Learning , vol.32 , Issue.1 , pp. 41-62
    • Fine, S.1    Singer, Y.2    Tishby, N.3
  • 19
    • 22944473332 scopus 로고    scopus 로고
    • Multi-level boundary classification for information extraction
    • A. Finn and N. Kushmerick. Multi-level boundary classification for information extraction. In ECML 2004, pages 111-122, 2004.
    • (2004) ECML 2004 , pp. 111-122
    • Finn, A.1    Kushmerick, N.2
  • 21
    • 85149129374 scopus 로고    scopus 로고
    • Toward general-purpose learning for information extraction
    • C. Boitet and P. Whitelock, editors, San Francisco, CA
    • D. Freitag. Toward general-purpose learning for information extraction. In C. Boitet and P. Whitelock, editors, Proc. 36th Annual Meeting of the Association for Computational Linguistics, pages 404-408, San Francisco, CA, 1998.
    • (1998) Proc. 36th Annual Meeting of the Association for Computational Linguistics , pp. 404-408
    • Freitag, D.1
  • 22
    • 84905866214 scopus 로고    scopus 로고
    • Boosted wrapper induction
    • D. Freitag and N. Kushmerick. Boosted wrapper induction. In AAAI/IAAI, pages 577-583, 2000.
    • (2000) AAAI/IAAI , pp. 577-583
    • Freitag, D.1    Kushmerick, N.2
  • 24
    • 84943738891 scopus 로고    scopus 로고
    • Information extraction with HMM structures learned by stochastic optimization
    • D. Freitag and A. K. McCallum. Information extraction with HMM structures learned by stochastic optimization. In AAAI/IAAI, pages 584-589, 2000.
    • (2000) AAAI/IAAI , pp. 584-589
    • Freitag, D.1    McCallum, A.K.2
  • 25
    • 0033075882 scopus 로고    scopus 로고
    • Separate-and-conquer rule learning
    • J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1):3-54, 1999.
    • (1999) Artificial Intelligence Review , vol.13 , Issue.1 , pp. 3-54
    • Fürnkranz, J.1
  • 27
    • 36849094302 scopus 로고    scopus 로고
    • D. Kauchak, J. Smarr, and C. Elkan. Sources of success for information extraction methods. Technical Report CS2002-0696, UC San Diego, 2002.
    • D. Kauchak, J. Smarr, and C. Elkan. Sources of success for information extraction methods. Technical Report CS2002-0696, UC San Diego, 2002.
  • 28
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. K. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.K.2    Pereira, F.3
  • 31
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 33
    • 0000747663 scopus 로고    scopus 로고
    • Maximum entropy Markov models for information extraction and segmentation
    • A. K. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extraction and segmentation. In ICML, 2000.
    • (2000) ICML
    • McCallum, A.K.1    Freitag, D.2    Pereira, F.3
  • 35
    • 85120485377 scopus 로고    scopus 로고
    • Algorithms that learn to extract information-BBN: Description of the SIFT system as used for MUC
    • and the Annotation Group
    • S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, R. Weischedel, and the Annotation Group. Algorithms that learn to extract information-BBN: Description of the SIFT system as used for MUC. In MUC-7, 1998.
    • (1998) MUC-7
    • Miller, S.1    Crystal, M.2    Fox, H.3    Ramshaw, L.4    Schwartz, R.5    Stone, R.6    Weischedel, R.7
  • 36
    • 85048535737 scopus 로고    scopus 로고
    • A novel use of statistical parsing to extract information from text
    • S. Miller, H. Fox, L. Ramshaw, and R. Weischedel. A novel use of statistical parsing to extract information from text. In ANLP-NAACL, pages 226-233, 2000.
    • (2000) ANLP-NAACL , pp. 226-233
    • Miller, S.1    Fox, H.2    Ramshaw, L.3    Weischedel, R.4
  • 37
  • 41
    • 33947709854 scopus 로고    scopus 로고
    • Bayesian information extraction network
    • L. Peshkin and A. Pfeffer. Bayesian information extraction network. In IJCAI, 2003.
    • (2003) IJCAI
    • Peshkin, L.1    Pfeffer, A.2
  • 42
    • 0000431236 scopus 로고
    • Induction of logic programs: FOIL and related systems
    • 13(3,4):287-312
    • J. R. Quinlan and R. M. Cameron-Jones. Induction of logic programs: FOIL and related systems. New Generation Computing, 13(3,4):287-312, 1995.
    • (1995) New Generation Computing
    • Quinlan, J.R.1    Cameron-Jones, R.M.2
  • 45
    • 84858511409 scopus 로고    scopus 로고
    • RISE repository. http://www.isi.edu/info-agents/RISE/.
    • RISE repository
  • 46
    • 84880912564 scopus 로고    scopus 로고
    • Relational learning via propositional algorithms: An information extraction case study
    • D. Roth and W.-t. Yih. Relational learning via propositional algorithms: An information extraction case study. In IJCAI, 2001.
    • (2001) IJCAI
    • Roth, D.1    Yih, W.-T.2
  • 47
    • 33645986276 scopus 로고    scopus 로고
    • Probabilistic reasoning for entity & relation recognition
    • D. Roth and W.-t. Yih. Probabilistic reasoning for entity & relation recognition. In COLING'02, 2002.
    • (2002) COLING'02
    • Roth, D.1    Yih, W.-T.2
  • 50
    • 24344471378 scopus 로고    scopus 로고
    • Incremental information extraction using tree-based context representations
    • A. Gelbukh, editor, Sixth International Conference on Intelligent Text Processing and Computational Linguistics CICLing 2005, Springer
    • C. Siefkes. Incremental information extraction using tree-based context representations. In A. Gelbukh, editor, Sixth International Conference on Intelligent Text Processing and Computational Linguistics (CICLing 2005), Lecture Notes in Computer Science, pages 510-521. Springer, 2005.
    • (2005) Lecture Notes in Computer Science , pp. 510-521
    • Siefkes, C.1
  • 51
    • 84880805498 scopus 로고    scopus 로고
    • Hierarchical hidden Markov models for information extraction
    • M. Skounakis, M. Craven, and S. Ray. Hierarchical hidden Markov models for information extraction. In IJCAI, 2003.
    • (2003) IJCAI
    • Skounakis, M.1    Craven, M.2    Ray, S.3
  • 54
    • 0032624184 scopus 로고    scopus 로고
    • Learning information extraction rules for semi-structured and free text
    • S. Soderland. Learning information extraction rules for semi-structured and free text. Machine Learning, 34(1-3):233-272, 1999.
    • (1999) Machine Learning , vol.34 , Issue.1-3 , pp. 233-272
    • Soderland, S.1
  • 57
    • 36849085772 scopus 로고    scopus 로고
    • K. Sudo, S. Sekine, and R. Grishman. Automatic pattern acquisition for Japanese information extraction. In HLT2001, 2001.
    • K. Sudo, S. Sekine, and R. Grishman. Automatic pattern acquisition for Japanese information extraction. In HLT2001, 2001.
  • 59
    • 36849038782 scopus 로고    scopus 로고
    • J. Zavrel and W. Daelemans. Feature-rich memory-based classification for shallow NLP and information extraction. In J. Franke, G. Nakhaeizadeh, and I. Renz, editors, Text Mining, Theoretical Aspects and Applications, pages 33-54. Springer Physica, 2003.
    • J. Zavrel and W. Daelemans. Feature-rich memory-based classification for shallow NLP and information extraction. In J. Franke, G. Nakhaeizadeh, and I. Renz, editors, Text Mining, Theoretical Aspects and Applications, pages 33-54. Springer Physica, 2003.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.