-
2
-
-
0001317699
-
A new way of using semidefinite programming with applications to linear equations mod p
-
[AEH01] G. Andersson, L. Engebretsen, and J. Hastad. A new way of using semidefinite programming with applications to linear equations mod p. Journal of Algorithms, 39(2):162-204, 2001.
-
(2001)
Journal of Algorithms
, vol.39
, Issue.2
, pp. 162-204
-
-
Andersson, G.1
Engebretsen, L.2
Hastad, J.3
-
4
-
-
0030393774
-
Probabilistic approximation of metric spaces and its algorithmic applications
-
[Bar96] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. Foundations of Computer Science, 1996.
-
(1996)
Foundations of Computer Science
-
-
Bartal, Y.1
-
5
-
-
0031623888
-
On approximating arbitrary metrices by tree metrics
-
[Bar98] Y. Bartal. On approximating arbitrary metrices by tree metrics. Symposium on Theory of Computing, 1998.
-
(1998)
Symposium on Theory of Computing
-
-
Bartal, Y.1
-
6
-
-
0032632361
-
Sub-quadratic approximation algorithms for clustering problems in high dimensional spaces
-
[BOR99] A. Borodin, R. Ostrovsky, Y. Rabani. Sub-quadratic approximation algorithms for clustering problems in high dimensional spaces. Symposium on Theory of Computing, 1999.
-
(1999)
Symposium on Theory of Computing
-
-
Borodin, A.1
Ostrovsky, R.2
Rabani, Y.3
-
7
-
-
0031641921
-
Rounding via trees: Deterministic approximation algorithms for group Steiner trees and k-Median
-
[CCGG98J M. Charikar and C. Chekuri and A. Goel and S. Guha. Rounding via trees: deterministic approximation algorithms for group Steiner trees and k-Median. Symposium on Theory of Computing, 1998.
-
(1998)
Symposium on Theory of Computing
-
-
Charikar, M.1
Chekuri, C.2
Goel, A.3
Guha, S.4
-
10
-
-
0003733695
-
An elementary proof of the Johnson-Lindenstrauss lemma
-
Berkeley, CA
-
[DG99] S. Dasgupta and A. Gupta. An elementary proof of the Johnson-Lindenstrauss lemma. ICSl technical report TR-99-006, Berkeley, CA, 1999.
-
(1999)
ICSl Technical Report TR-99-006
-
-
Dasgupta, S.1
Gupta, A.2
-
12
-
-
38249031101
-
The Johnson-Lindenstrauss lemma and the sphericity of some graphs
-
[FM88] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the sphericity of some graphs Journal of Combinatorial Theory B, 44(1988), pp. 355-362.
-
(1988)
Journal of Combinatorial Theory B
, vol.44
, pp. 355-362
-
-
Frankl, P.1
Maehara, H.2
-
13
-
-
0346613559
-
Improved approximation algorithms for MAX k-CUT and MAX BISECTION
-
[FJ97] Alan Frieze and Mark Jerrum. Improved approximation algorithms for MAX k-CUT and MAX BISECTION. Algorithmica, 18:67-81, 1997.
-
(1997)
Algorithmica
, vol.18
, pp. 67-81
-
-
Frieze, A.1
Jerrum, M.2
-
15
-
-
0029493083
-
Derandomizing semidefinite programming based approximation algorithms
-
[MR95] S. Mahajan and H. Ramesh. Derandomizing semidefinite programming based approximation algorithms. Foundations of Computer Science, 1995.
-
(1995)
Foundations of Computer Science
-
-
Mahajan, S.1
Ramesh, H.2
-
16
-
-
0003498504
-
-
Academic Press, Boston, fifth edition, January
-
[GR94] I.S. Gradsteyn and I.M. Ryzhik. TaMe of Integrals, Series, and Products. Academic Press, Boston, fifth edition, January 1994.
-
(1994)
TaMe of Integrals, Series, and Products
-
-
Gradsteyn, I.S.1
Ryzhik, I.M.2
-
17
-
-
84893574327
-
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
-
November
-
[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115-1145, November 1995.
-
(1995)
Journal of the ACM
, vol.42
, Issue.6
, pp. 1115-1145
-
-
Goemans, M.X.1
Williamson, D.P.2
-
18
-
-
0034827606
-
Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming
-
[GW01] Michel X. Goemans and David P. Williamson. Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming. Symposium on Theory of Computing, 2001.
-
(2001)
Symposium on Theory of Computing
-
-
Goemans, M.X.1
Williamson, D.P.2
-
19
-
-
0034504507
-
Stable distributions, pseudorandom generators, embeddings and data stream computation
-
[IndOO] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream computation Foundations of Computer Science, 2000.
-
(2000)
Foundations of Computer Science
-
-
Indyk, P.1
-
21
-
-
84871949205
-
Approximate nearest neighbors: Towards removing the curse of dimensionality
-
[IM97] Piotr Indyk and Rajeev Motwani, Approximate nearest neighbors: towards removing the curse of dimensionality. Symposium on Theory of Computing, 1997.
-
(1997)
Symposium on Theory of Computing
-
-
Indyk, P.1
Motwani, R.2
-
22
-
-
0001654702
-
Extensions of Lipshitz mapping into Hilbert space
-
[JL84] W.B. Johnson and J. Lindenstrauss. Extensions of Lipshitz mapping into Hilbert space. Contemporary Mathematics, 26:189-206, 1984.
-
(1984)
Contemporary Mathematics
, vol.26
, pp. 189-206
-
-
Johnson, W.B.1
Lindenstrauss, J.2
-
23
-
-
0032028848
-
Approximate graph coloring by semidefinite programming
-
March
-
[KMS98] David Kaxger, Rajeev Motwani and Madhu Sudan. Approximate graph coloring by semidefinite programming. Journal of the ACM, 45(2):246-265, March 1998.
-
(1998)
Journal of the ACM
, vol.45
, Issue.2
, pp. 246-265
-
-
Kaxger, D.1
Motwani, R.2
Sudan, M.3
-
26
-
-
0000947929
-
Pseudorandom sequences for space bounded computations
-
[Nis92] Noam Nisan, Pseudorandom sequences for space bounded computations. Combinatorica, 12:449-461, 1992.
-
(1992)
Combinatorica
, vol.12
, pp. 449-461
-
-
Nisan, N.1
-
28
-
-
0020829934
-
Improving the performance guarantee for approximate graph coloring
-
[Wig83] Avi Wigderson. Improving the performance guarantee for approximate graph coloring. Journal of the ACM, 30:729-735, 1983.
-
(1983)
Journal of the ACM
, vol.30
, pp. 729-735
-
-
Wigderson, A.1
-
29
-
-
0032266121
-
Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint
-
[Zwi98] U. Zwick. Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint. Symposium on Discrete Algorithms, 1998
-
(1998)
Symposium on Discrete Algorithms
-
-
Zwick, U.1
|