메뉴 건너뛰기




Volumn 71, Issue , 2004, Pages 295-304

Evidence for singularity formation in a class of stretched solutions of the equations for ideal MHD

Author keywords

[No Author keywords available]

Indexed keywords


EID: 36849055770     PISSN: 09265112     EISSN: None     Source Type: Book Series    
DOI: None     Document Type: Article
Times cited : (6)

References (11)
  • 1
    • 0031489424 scopus 로고    scopus 로고
    • Remarks on Singularities, Dimension and Energy Dissipation for ideal Magneto-Hydrodynamics
    • CAFLISCH, R., KLAPPER, I. & STEELE, G. 1997 Remarks on Singularities, Dimension and Energy Dissipation for ideal Magneto-Hydrodynamics. Commun. Math. Phys. 184, 443-455.
    • (1997) Commun. Math. Phys , vol.184 , pp. 443-455
    • Caflisch, R.1    Klapper, I.2    Steele, G.3
  • 2
    • 0347998526 scopus 로고    scopus 로고
    • The Euler Equations and Nonlocal Conservative Riccati Equations
    • CONSTANTIN, P. 2000 The Euler Equations and Nonlocal Conservative Riccati Equations. Internat. Math. Res. Notices (IMRN) 9, 455-465.
    • (2000) Internat. Math. Res. Notices (IMRN) , vol.9 , pp. 455-465
    • Constantin, P.1
  • 3
    • 0000385525 scopus 로고    scopus 로고
    • Geometric constraints on potentially singular solutions for the 3D Euler equations
    • CONSTANTIN, P., FEFFERMAN, CH. & MAJDA, A. 1996 Geometric constraints on potentially singular solutions for the 3D Euler equations. Comm. Partial. Diff. Equns 21, 559-571.
    • (1996) Comm. Partial. Diff. Equns , vol.21 , pp. 559-571
    • Constantin, P.1    Fefferman, C.H.2    Majda, A.3
  • 4
    • 0033359940 scopus 로고    scopus 로고
    • Dynamically stretched vortices as solutions of the 3D Navier-Stokes equations
    • GIBBON, J. D., FOKAS, A. & DOERING, C. R. 1999 Dynamically stretched vortices as solutions of the 3D Navier-Stokes equations. Physica D 132, 497-510.
    • (1999) Physica D , vol.132 , pp. 497-510
    • Gibbon, J.D.1    Fokas, A.2    Doering, C.R.3
  • 5
    • 0039890479 scopus 로고    scopus 로고
    • Singularity formation in a class of stretched solutions of the equations for ideal MHD
    • GIBBON, J. D. & OHKITANI, K. 2001 Singularity formation in a class of stretched solutions of the equations for ideal MHD. Nonlinearity 14, 1239-1264.
    • (2001) Nonlinearity , vol.14 , pp. 1239-1264
    • Gibbon, J.D.1    Ohkitani, K.2
  • 6
    • 0001580840 scopus 로고    scopus 로고
    • Geometry of singular structures in magnetohydrodynamic flows
    • GRAUER, R. & MARLIANI, C. 1998 Geometry of singular structures in magnetohydrodynamic flows. Phys. Plasmas 5, 2544-2552.
    • (1998) Phys. Plasmas , vol.5 , pp. 2544-2552
    • Grauer, R.1    Marliani, C.2
  • 7
    • 0027454950 scopus 로고
    • Evidence for a singularity of the 3-dimensional, incompressible Euler equations
    • KERR, R. 1993 Evidence for a singularity of the 3-dimensional, incompressible Euler equations. Phys. Fluids A 5, 1725-1746.
    • (1993) Phys. Fluids A , vol.5 , pp. 1725-1746
    • Kerr, R.1
  • 8
    • 0000253035 scopus 로고    scopus 로고
    • Evidence for a singularity in ideal agnetohydrodynamics: Implications for fast reconnection
    • KERR, R. & BRANDENBURG, A. 1999 Evidence for a singularity in ideal agnetohydrodynamics: Implications for fast reconnection. Phys. Rev. Lett. 83, 1155-1158.
    • (1999) Phys. Rev. Lett , vol.83 , pp. 1155-1158
    • Kerr, R.1    Brandenburg, A.2
  • 9
    • 0003200409 scopus 로고    scopus 로고
    • Collapse of a class of three-dimensional Euler vortices
    • MALHAM, S. J. A. 2000 Collapse of a class of three-dimensional Euler vortices. Proc. Royal Soc. Lond. 456, 2823-2833.
    • (2000) Proc. Royal Soc. Lond , vol.456 , pp. 2823-2833
    • Malham, S.J.A.1
  • 10
    • 0034532989 scopus 로고    scopus 로고
    • Numerical study of singularity formation in a class of Euler and Navier-Stokes flows
    • OHKITANI, K. & GIBBON, J. D. 2000 Numerical study of singularity formation in a class of Euler and Navier-Stokes flows. Phys. Fluids 12, 3181-3194.
    • (2000) Phys. Fluids , vol.12 , pp. 3181-3194
    • Ohkitani, K.1    Gibbon, J.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.