메뉴 건너뛰기




Volumn 7, Issue 2, 2007, Pages 183-196

Two postestimation commands for assessing confounding effects in epidemiological studies

Author keywords

All possible effects; Change in estimate; Chest; Confall; Confgr; Confounding; Epidemiological methods; St0124

Indexed keywords


EID: 36849053888     PISSN: 1536867X     EISSN: None     Source Type: Journal    
DOI: 10.1177/1536867x0700700203     Document Type: Article
Times cited : (16)

References (16)
  • 1
    • 0016355478 scopus 로고
    • A new look at statistical model identification
    • Akaike, H. 1974. A new look at statistical model identification. IEEE Transactions on Automatic Control AC-19: 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0022531589 scopus 로고
    • Adjusting for confounding with statistical software packages
    • Debanne, S. M., and R. J. Sokol. 1986. Adjusting for confounding with statistical software packages. American Journal of Perinatology 3: 133-134.
    • (1986) American Journal of Perinatology , vol.3 , pp. 133-134
    • Debanne, S.M.1    Sokol, R.J.2
  • 10
    • 2942660300 scopus 로고    scopus 로고
    • Control for confounding in the presence of measurement error in hierarchical models
    • Schwartz, J., and B. A. Coull. 2003. Control for confounding in the presence of measurement error in hierarchical models. Biostatistics 4: 539-553.
    • (2003) Biostatistics , vol.4 , pp. 539-553
    • Schwartz, J.1    Coull, B.A.2
  • 11
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 12
    • 3843086509 scopus 로고    scopus 로고
    • Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer
    • Steenland, K., and S. Greenland. 2004. Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer. American Journal of Epidemiology 160: 384-392.
    • (2004) American Journal of Epidemiology , vol.160 , pp. 384-392
    • Steenland, K.1    Greenland, S.2
  • 13
    • 24144477605 scopus 로고    scopus 로고
    • Adjusting effect estimates for unmeasured confounding with validation data using propensity score calibration
    • Sturmer, T., S. Schneeweiss, J. Avorn, and R. J. Glynn. 2005. Adjusting effect estimates for unmeasured confounding with validation data using propensity score calibration. American Journal of Epidemiology 162: 279-289.
    • (2005) American Journal of Epidemiology , vol.162 , pp. 279-289
    • Sturmer, T.1    Schneeweiss, S.2    Avorn, J.3    Glynn, R.J.4
  • 14
    • 36849078754 scopus 로고    scopus 로고
    • sbe27: Assessing confounding effects in epidemiological studies
    • Wang, Z. 2000. sbe27: Assessing confounding effects in epidemiological studies. Stata Technical Bulletin 49: 12-15.
    • (2000) Stata Technical Bulletin , vol.49 , pp. 12-15
    • Wang, Z.1
  • 15
    • 36849040400 scopus 로고    scopus 로고
    • Reprinted in, College Station, TX: Stata Press
    • Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 134-138. College Station, TX: Stata Press.
    • Technical Bulletin Reprints , vol.9 , pp. 134-138
    • Stata1
  • 16
    • 0027468093 scopus 로고
    • Toward a clearer definition of confounding
    • Weinberg, C. R. 1993. Toward a clearer definition of confounding. American Journal of Epidemiology 137: 1-8.
    • (1993) American Journal of Epidemiology , vol.137 , pp. 1-8
    • Weinberg, C.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.