메뉴 건너뛰기




Volumn , Issue , 2007, Pages 191-196

Mobile user movement prediction using bayesian learning for neural networks

Author keywords

Bayesian network; Markov chain; Monte Carlo methods; Neural networks

Indexed keywords

BAYESIAN NETWORKS; LEARNING SYSTEMS; MARKOV PROCESSES; MONTE CARLO METHODS; NEURAL NETWORKS; USER INTERFACES; WI-FI;

EID: 36849052330     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1280940.1280982     Document Type: Conference Paper
Times cited : (54)

References (6)
  • 1
    • 36849048838 scopus 로고    scopus 로고
    • Hassan Karimi and Xiong Liu. A Predictive Location Model for Location-Based Services. GIS'03, November 7-8, 2003, New Orleans, Louisiana, USA.
    • Hassan Karimi and Xiong Liu. A Predictive Location Model for Location-Based Services. GIS'03, November 7-8, 2003, New Orleans, Louisiana, USA.
  • 2
    • 28244436972 scopus 로고    scopus 로고
    • User Pattern Learning Strategy for Managing Users' Mobility in UMTS Networks
    • November/December
    • Alejandro Quintero. A User Pattern Learning Strategy for Managing Users' Mobility in UMTS Networks. IEEE Transactions on Mobile Computing, VOL. 4, NO. 6, November/December 2005.
    • (2005) IEEE Transactions on Mobile Computing , vol.4 , Issue.6
    • Alejandro Quintero, A.1
  • 3
    • 36849086516 scopus 로고    scopus 로고
    • Jarno Vanhatalo and Aki Vehtari. MCMC Methods for MLP-network and Gaussian Process and Stuff- A documentation for Matlab Toolbox MCMCstuff. Laboratory of Computational Engineering, Helsinki University of Technology
    • Jarno Vanhatalo and Aki Vehtari. MCMC Methods for MLP-network and Gaussian Process and Stuff- A documentation for Matlab Toolbox MCMCstuff. Laboratory of Computational Engineering, Helsinki University of Technology.
  • 4
    • 36849023175 scopus 로고    scopus 로고
    • Bayesian Methods for Machine Learning
    • 13 December, University of Toronto
    • Radford Neal. Bayesian Methods for Machine Learning. NIPS Tutorial, 13 December 2004, University of Toronto.
    • (2004) NIPS Tutorial
    • Neal, R.1
  • 5
    • 36849041650 scopus 로고    scopus 로고
    • Jouko Lampinen and Aki Vehtari. Bayesian Approach for Neural Networks, Review and Case Studies. Laboratory of Computational Engineering, Helsinki University of Technology
    • Jouko Lampinen and Aki Vehtari. Bayesian Approach for Neural Networks - Review and Case Studies. Laboratory of Computational Engineering, Helsinki University of Technology.
  • 6
    • 36849016972 scopus 로고    scopus 로고
    • Aki Vehtari, Simo Särkkä, and Jouko Lampinen. On MCMC Sampling in Bayesian MLP Neural Networks. Laboratory of Computational Engineering, Helsinki University of Technology
    • Aki Vehtari, Simo Särkkä, and Jouko Lampinen. On MCMC Sampling in Bayesian MLP Neural Networks. Laboratory of Computational Engineering, Helsinki University of Technology.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.