-
3
-
-
84933513294
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.81.574
-
B. Thomas and A. M. Squires, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.81.574 81, 574 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 574
-
-
Thomas, B.1
Squires, A.M.2
-
4
-
-
23044529204
-
-
GRMAFE 1434-5021 10.1007/s10035-001-0098-7
-
R. P. Behringer, E. van Doorn, R. R. Hartley, and H. K. Pak, Granular Matter GRMAFE 1434-5021 10.1007/s10035-001-0098-7 4, 9 (2002).
-
(2002)
Granular Matter
, vol.4
, pp. 9
-
-
Behringer, R.P.1
Van Doorn, E.2
Hartley, R.R.3
Pak, H.K.4
-
7
-
-
0038323342
-
-
CRPOBN 1631-0705 10.1016/S1631-0705(02)01313-0
-
J. Duran, C. R. Phys. CRPOBN 1631-0705 10.1016/S1631-0705(02)01313-0 3, 217 (2002).
-
(2002)
C. R. Phys.
, vol.3
, pp. 217
-
-
Duran, J.1
-
8
-
-
41349102326
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.71.011308
-
R. J. Milburn, M. A. Naylor, A. J. Smith, M. C. Leaper, K. Good, M. R. Swift, and P. J. King, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.71.011308 71, 011308 (2005).
-
(2005)
Phys. Rev. e
, vol.71
, pp. 011308
-
-
Milburn, R.J.1
Naylor, M.A.2
Smith, A.J.3
Leaper, M.C.4
Good, K.5
Swift, M.R.6
King, P.J.7
-
9
-
-
33746362486
-
-
ACHEAT 0065-2377 10.1016/S0065-2377(06)31002-2
-
M. A. van der Hoef, M. Ye, M. van Sint Annaland, A. T. Andrews IV, S. Sundaresan, and J. A. M. Kuipers, Adv. Chem. Eng. ACHEAT 0065-2377 10.1016/S0065-2377(06)31002-2 31, 65 (2006).
-
(2006)
Adv. Chem. Eng.
, vol.31
, pp. 65
-
-
Van Der Hoef, M.A.1
Ye, M.2
Van Sint Annaland, M.3
Andrews, I.V.A.T.4
Sundaresan, S.5
Kuipers, J.A.M.6
-
10
-
-
33750977823
-
-
CESCAC 0009-2509 10.1016/j.ces.2006.08.014
-
N. G. Deen, M. van Sint Annaland, M. A. van der Hoef, and J. A. M. Kuipers, Chem. Eng. Sci. CESCAC 0009-2509 10.1016/j.ces.2006.08.014 62, 28 (2007)
-
(2007)
Chem. Eng. Sci.
, vol.62
, pp. 28
-
-
Deen, N.G.1
Van Sint Annaland, M.2
Van Der Hoef, M.A.3
Kuipers, J.A.M.4
-
12
-
-
36749025291
-
-
Our simulations show that the precise form of the drag force is not very critical: Simulation carried out with the Ergun drag force relation led to similar results.
-
Our simulations show that the precise form of the drag force is not very critical: Simulation carried out with the Ergun drag force relation led to similar results.
-
-
-
-
13
-
-
36749006278
-
-
See EPAPS Document No. E-PLEEE8-76-017711 for a video of the Faraday heap during one driving cycle and for a video of the evolution of the heap pattern. For more information on EPAPS, see
-
See EPAPS Document No. E-PLEEE8-76-017711 for a video of the Faraday heap during one driving cycle and for a video of the evolution of the heap pattern. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html
-
-
-
-
15
-
-
36749022905
-
-
Thomas and Squires use a linear interpolation between floor pressures and the constant surface pressure to obtain a pressure within the bed. This interpolation results in isobars that follow the surface-this is, however, not mentioned in their article, nor is the important consequence of the resulting inward pressure gradient near the surface.
-
Thomas and Squires use a linear interpolation between floor pressures and the constant surface pressure to obtain a pressure within the bed. This interpolation results in isobars that follow the surface-this is, however, not mentioned in their article, nor is the important consequence of the resulting inward pressure gradient near the surface.
-
-
-
-
16
-
-
12044252828
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.65.851
-
M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.65.851 65, 851 (1993).
-
(1993)
Rev. Mod. Phys.
, vol.65
, pp. 851
-
-
Cross, M.C.1
Hohenberg, P.C.2
-
18
-
-
0040042002
-
-
PYLAAG 0375-9601 10.1016/S0375-9601(97)00684-1
-
E. van Doorn and R. P. Behringer, Phys. Lett. A PYLAAG 0375-9601 10.1016/S0375-9601(97)00684-1 235, 469 (1997).
-
(1997)
Phys. Lett. A
, vol.235
, pp. 469
-
-
Van Doorn, E.1
Behringer, R.P.2
-
19
-
-
84867721950
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.87.254301
-
J. Duran, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.87.254301 87, 254301 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 254301
-
-
Duran, J.1
-
21
-
-
36749054825
-
-
Even if the viscosity of the fluid is reduced to zero, a small drag force acts on the particles, because part of the drag force does not depend on the viscosity, but on the pressure drop over a particle (the so-called form drag, which is included in the empirical models). However, for realistic parameters, the form drag is much smaller than the viscous drag and changing μ leads to similar results as changing the air drag factor.
-
Even if the viscosity of the fluid is reduced to zero, a small drag force acts on the particles, because part of the drag force does not depend on the viscosity, but on the pressure drop over a particle (the so-called form drag, which is included in the empirical models). However, for realistic parameters, the form drag is much smaller than the viscous drag and changing μ leads to similar results as changing the air drag factor.
-
-
-
-
22
-
-
36749005191
-
-
The dimensionless acceleration Γ is important because, in a vacuum, it is the only parameter that determines the phase angle at which the granular mass detaches from and collides with the bottom of the box during a vibration cycle.
-
The dimensionless acceleration Γ is important because, in a vacuum, it is the only parameter that determines the phase angle at which the granular mass detaches from and collides with the bottom of the box during a vibration cycle.
-
-
-
-
23
-
-
36749047025
-
-
The simulation results of the inward motion above Γ 1.9 are very scattered (because the heap does not remain in the same position) and are therefore not shown in the plot.
-
The simulation results of the inward motion above Γ 1.9 are very scattered (because the heap does not remain in the same position) and are therefore not shown in the plot.
-
-
-
|