-
1
-
-
0000524468
-
-
Ed, Z. Rappoport, Wiley, Chichester, chap. 21, pp
-
G. Maas, H. Hopf in The Chemistry of Dienes and Polyenes, Vol. 1 (Ed.: Z. Rappoport), Wiley, Chichester, 1997, chap. 21, pp. 927-977.
-
(1997)
The Chemistry of Dienes and Polyenes
, vol.1
, pp. 927-977
-
-
Maas, G.1
Hopf, H.2
-
5
-
-
33845915315
-
-
a) C. Domene, P. W. Fowler, L. W. Jenneskens, E. Steiner, Chem. Eur. J. 2007, 13, 269-276;
-
(2007)
Chem. Eur. J
, vol.13
, pp. 269-276
-
-
Domene, C.1
Fowler, P.W.2
Jenneskens, L.W.3
Steiner, E.4
-
6
-
-
34247478716
-
-
b) K. Y. Chernichenko, V. V. Sumerin, R. V. Shpanchenko, E. S. Balenkova, V. G. Nenajdenko, Angew. Chem. 2006, 118, 7527-7530;
-
(2006)
Angew. Chem
, vol.118
, pp. 7527-7530
-
-
Chernichenko, K.Y.1
Sumerin, V.V.2
Shpanchenko, R.V.3
Balenkova, E.S.4
Nenajdenko, V.G.5
-
7
-
-
33751254390
-
-
Angew. Chem. Int. Ed. 2006, 45, 7367-7370.
-
(2006)
Chem. Int. Ed
, vol.45
, pp. 7367-7370
-
-
Angew1
-
8
-
-
0035800533
-
-
a) M. B. Nielsen, M. Schreiber, Y. G. Baek, P. Seiler, S. Lecomte, C. Boudon, R. R. Tykwinski, J.-P. Gisselbrecht, V. Gramlich, P. J. Skinner, C. Bosshard, P. Gunter, M. Gross, F. Diederich, Chem. Eur. J. 2001, 7, 3263-3280;
-
(2001)
Chem. Eur. J
, vol.7
, pp. 3263-3280
-
-
Nielsen, M.B.1
Schreiber, M.2
Baek, Y.G.3
Seiler, P.4
Lecomte, S.5
Boudon, C.6
Tykwinski, R.R.7
Gisselbrecht, J.-P.8
Gramlich, V.9
Skinner, P.J.10
Bosshard, C.11
Gunter, P.12
Gross, M.13
Diederich, F.14
-
9
-
-
0030937512
-
-
b) A. Stanger, N. Ashkenazi, R. Boese, D. Bläser, P. Stellberg, Chem. Eur. J. 1997, 3, 208-211;
-
(1997)
Chem. Eur. J
, vol.3
, pp. 208-211
-
-
Stanger, A.1
Ashkenazi, N.2
Boese, R.3
Bläser, D.4
Stellberg, P.5
-
10
-
-
0033515567
-
-
c) M. Kaftory, M. Botoshansky, S. Hyoda, T. Watanabe, F. Toda, J. Org. Chem. 1999, 64, 2287-2292;
-
(1999)
J. Org. Chem
, vol.64
, pp. 2287-2292
-
-
Kaftory, M.1
Botoshansky, M.2
Hyoda, S.3
Watanabe, T.4
Toda, F.5
-
11
-
-
23644434099
-
-
d) Y.-L. Zhao, Q. Liu, J.-P. Zhang, Z.-Q. Liu, J. Org. Chem. 2005, 70, 6913-6917.
-
(2005)
J. Org. Chem
, vol.70
, pp. 6913-6917
-
-
Zhao, Y.-L.1
Liu, Q.2
Zhang, J.-P.3
Liu, Z.-Q.4
-
12
-
-
0041344708
-
-
T. Höpfner, P. G. Jones, B. Ahrens, I. Dix, L. Ernst, H. Hopf, Eur. J. Org. Chem. 2003, 14, 2596-2611.
-
(2003)
Eur. J. Org. Chem
, vol.14
, pp. 2596-2611
-
-
Höpfner, T.1
Jones, P.G.2
Ahrens, B.3
Dix, I.4
Ernst, L.5
Hopf, H.6
-
14
-
-
0000016958
-
-
a) A. E. Learned, A. M. Arif, P. J. Stang, J. Org. Chem. 1988, 53, 3122-3123;
-
(1988)
J. Org. Chem
, vol.53
, pp. 3122-3123
-
-
Learned, A.E.1
Arif, A.M.2
Stang, P.J.3
-
15
-
-
0040932109
-
-
b) S. Hashmi, K. Polborn, G. Szeimies, Chem. Ber. 1989, 122, 2399-2401.
-
(1989)
Chem. Ber
, vol.122
, pp. 2399-2401
-
-
Hashmi, S.1
Polborn, K.2
Szeimies, G.3
-
16
-
-
0000166470
-
-
Puckered structures of [3]- and [4]radialenes are also known: a F. P. Van Remoortere, F. P. Boer, J. Am. Chem. Soc. 1970, 92, 3355-3360;
-
Puckered structures of [3]- and [4]radialenes are also known: a) F. P. Van Remoortere, F. P. Boer, J. Am. Chem. Soc. 1970, 92, 3355-3360;
-
-
-
-
17
-
-
0001687740
-
-
b) M. Iyoda, H. Otani, M. Oda, Y. Kai, Y. Baba, N. Kasai, J. Am. Chem. Soc. 1986, 108, 5371-5372;
-
(1986)
J. Am. Chem. Soc
, vol.108
, pp. 5371-5372
-
-
Iyoda, M.1
Otani, H.2
Oda, M.3
Kai, Y.4
Baba, Y.5
Kasai, N.6
-
18
-
-
36749044238
-
-
c) F. W. Nader, C. D. Wacker, H. Irngartinger, U. Huber-Patz, R. Jahn, H. Rodewald, Angew. Chem. 1985, 97, 877-878;
-
(1985)
Angew. Chem
, vol.97
, pp. 877-878
-
-
Nader, F.W.1
Wacker, C.D.2
Irngartinger, H.3
Huber-Patz, U.4
Jahn, R.5
Rodewald, H.6
-
20
-
-
37049068064
-
-
M. Iyoda, H. Otani, M. Oda, Y. Kai, Y. Baba, N. Kasai, J. Chem. Soc. Chem. Commun. 1986, 1794-1796.
-
(1986)
J. Chem. Soc. Chem. Commun
, pp. 1794-1796
-
-
Iyoda, M.1
Otani, H.2
Oda, M.3
Kai, Y.4
Baba, Y.5
Kasai, N.6
-
22
-
-
0001211514
-
-
b) T. Sugimoto, Y. Misaki, T. Kajita, Z. Yoshida, Y. Kai, N. Kasai, J. Am. Chem. Soc. 1987, 109, 4106-4107;
-
(1987)
J. Am. Chem. Soc
, vol.109
, pp. 4106-4107
-
-
Sugimoto, T.1
Misaki, Y.2
Kajita, T.3
Yoshida, Z.4
Kai, Y.5
Kasai, N.6
-
23
-
-
0001285755
-
-
c) G. Wilke, Angew. Chem. 1988, 100, 189-211;
-
(1988)
Angew. Chem
, vol.100
, pp. 189-211
-
-
Wilke, G.1
-
25
-
-
1542670962
-
-
a) Y. Kono, H. Miyamoto, Y. Aso, T. Otsubo, F. Ogura, T. Tanaka, M. Sawada, Angew. Chem. 1989, 101, 1254-1255;
-
(1989)
Angew. Chem
, vol.101
, pp. 1254-1255
-
-
Kono, Y.1
Miyamoto, H.2
Aso, Y.3
Otsubo, T.4
Ogura, F.5
Tanaka, T.6
Sawada, M.7
-
27
-
-
0000012730
-
-
b) T. Otsubo, Y. Kono, N. Hozo, H. Miyamoto, Y. Aso, F. Ogura, T. Tanaka, M. Sawada, Bull. Chem. Soc. Jpn. 1993, 66, 2033-2041.
-
(1993)
Bull. Chem. Soc. Jpn
, vol.66
, pp. 2033-2041
-
-
Otsubo, T.1
Kono, Y.2
Hozo, N.3
Miyamoto, H.4
Aso, Y.5
Ogura, F.6
Tanaka, T.7
Sawada, M.8
-
28
-
-
0010211476
-
-
F. Wudl, R. C. Haddon, E. T. Zellers, F. B. Bramwell, J. Org. Chem. 1979, 44, 2491-2493.
-
(1979)
J. Org. Chem
, vol.44
, pp. 2491-2493
-
-
Wudl, F.1
Haddon, R.C.2
Zellers, E.T.3
Bramwell, F.B.4
-
31
-
-
34547382791
-
-
H. Irngartinger, U. Huber-Patz, H. Rodewald, Acta Crystallogr. Sect. C 1985, 41, 1088-1089.
-
(1985)
Acta Crystallogr. Sect. C
, vol.41
, pp. 1088-1089
-
-
Irngartinger, H.1
Huber-Patz, U.2
Rodewald, H.3
-
32
-
-
0037164082
-
-
Other thiophene-fused [8]annulenes have been suggested as possible single-molecule electromechanical actuators; see: M. J. Marsella, R. J. Reid, S. Estassi, L.-S. Wang, J. Am. Chem. Soc. 2002, 124, 12507-12510.
-
Other thiophene-fused [8]annulenes have been suggested as possible single-molecule electromechanical actuators; see: M. J. Marsella, R. J. Reid, S. Estassi, L.-S. Wang, J. Am. Chem. Soc. 2002, 124, 12507-12510.
-
-
-
-
33
-
-
36749082866
-
-
See the Supporting Information for details
-
See the Supporting Information for details.
-
-
-
-
34
-
-
0000897924
-
-
2] was previously reported to produce 6 as the sole product: Z.-H. Zhou, T. Yamamoto, J. Organomet. Chem. 1991, 414, 119-127.
-
2] was previously reported to produce 6 as the sole product: Z.-H. Zhou, T. Yamamoto, J. Organomet. Chem. 1991, 414, 119-127.
-
-
-
-
35
-
-
0004989914
-
-
3 followed by selective debromination at the 2- and 5-positions with nBuLi (2 equiv) in ether: R. Ketcham, A.-B. Hoernfeldt, S. Gronowitz, J. Org. Chem. 1984, 49, 1117-1119.
-
3 followed by selective debromination at the 2- and 5-positions with nBuLi (2 equiv) in ether: R. Ketcham, A.-B. Hoernfeldt, S. Gronowitz, J. Org. Chem. 1984, 49, 1117-1119.
-
-
-
-
36
-
-
36749022150
-
-
The unit cell of compound 4 consists of two very similar independent molecules. Average values for these two molecules are used in the discussion.
-
The unit cell of compound 4 consists of two very similar independent molecules. Average values for these two molecules are used in the discussion.
-
-
-
-
37
-
-
0033592340
-
-
The X-ray crystal structure of structurally similar triphenyleno[1,12- bcd:4,5-b′c′d′:8,9-b″c″d″]trithiophe ne has been reported: K. Imamura, K. Takimiya, Y. Aso, T. Otsubo, Chem. Commun. 1999, 1859-1860. However, this molecule has a bowl-shaped structure (in contrast to the planar structure of 4) and does not belong to the radialene family owing to electron delocalization in the three peripheral phenyl rings.
-
The X-ray crystal structure of structurally similar triphenyleno[1,12- bcd:4,5-b′c′d′:8,9-b″c″d″]trithiophene has been reported: K. Imamura, K. Takimiya, Y. Aso, T. Otsubo, Chem. Commun. 1999, 1859-1860. However, this molecule has a bowl-shaped structure (in contrast to the planar structure of 4) and does not belong to the radialene family owing to electron delocalization in the three peripheral phenyl rings.
-
-
-
-
38
-
-
0001353566
-
-
Similar elongation of the C-C bonds in the central six-membered ring as a result of the aromaticity of the peripheral rings was observed for tris(tricarbonylironcyclobutadieno)benzene: A. Stanger, N. Ashkenazi, R. Boese, J. Org. Chem. 1998, 63, 247-253
-
Similar elongation of the C-C bonds in the central six-membered ring as a result of the aromaticity of the peripheral rings was observed for tris(tricarbonylironcyclobutadieno)benzene: A. Stanger, N. Ashkenazi, R. Boese, J. Org. Chem. 1998, 63, 247-253.
-
-
-
-
39
-
-
36749007721
-
-
More accurately, these bonds should be called semicyclic double bonds; however, exocyclic is the term more often used in this context
-
More accurately, these bonds should be called semicyclic double bonds; however, exocyclic is the term more often used in this context.
-
-
-
-
40
-
-
10344259627
-
-
a) M. Bendikov, F. Wudl, D. F. Perepichka, Chem. Rev. 2004, 104, 4891-4945;
-
(2004)
Chem. Rev
, vol.104
, pp. 4891-4945
-
-
Bendikov, M.1
Wudl, F.2
Perepichka, D.F.3
-
41
-
-
17944379501
-
-
b) I. Bulgarovskaya, V. Vozzhennikov, S. Aleksandrov, V. Bel'skii, Latv. PSR Zinat. Akad. Vestis Kim. Ser. 1983, 4, 53;
-
(1983)
Latv. PSR Zinat. Akad. Vestis Kim. Ser
, vol.4
, pp. 53
-
-
Bulgarovskaya, I.1
Vozzhennikov, V.2
Aleksandrov, S.3
Bel'skii, V.4
-
42
-
-
33645308778
-
-
c) O. D. Jurchescu, A. Meetsma, T. T. M. Palstra, Acta Crystallogr. Sect. B 2006, 62, 330-334.
-
(2006)
Acta Crystallogr. Sect. B
, vol.62
, pp. 330-334
-
-
Jurchescu, O.D.1
Meetsma, A.2
Palstra, T.T.M.3
-
43
-
-
0029378912
-
-
a) T. Siegrist, R. M. Fleming, R. C. Haddon, R. A. Laudise, A. J. Lovinger, H. E. Katz, P. Bridenbaugh, D. D. Davis, J. Mater. Res. 1995, 10, 2170-2173;
-
(1995)
J. Mater. Res
, vol.10
, pp. 2170-2173
-
-
Siegrist, T.1
Fleming, R.M.2
Haddon, R.C.3
Laudise, R.A.4
Lovinger, A.J.5
Katz, H.E.6
Bridenbaugh, P.7
Davis, D.D.8
-
44
-
-
3043005646
-
-
b) G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J.-L. Fave, F. Garnier, Chem. Mater. 1995, 7, 1337-1341.
-
(1995)
Chem. Mater
, vol.7
, pp. 1337-1341
-
-
Horowitz, G.1
Bachet, B.2
Yassar, A.3
Lang, P.4
Demanze, F.5
Fave, J.-L.6
Garnier, F.7
-
45
-
-
0011190497
-
-
a) P. von R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van E. Hommes, J. Am. Chem. Soc. 1996, 118, 6317-6318;
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 6317-6318
-
-
Schleyer, P.V.R.1
Maerker, C.2
Dransfeld, A.3
Jiao, H.4
Hommes, N.J.R.V.E.5
-
46
-
-
27744530363
-
-
b) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. von R. Schleyer, Chem. Rev. 2005, 105, 3842-3888;
-
(2005)
Chem. Rev
, vol.105
, pp. 3842-3888
-
-
Chen, Z.1
Wannere, C.S.2
Corminboeuf, C.3
Puchta, R.4
Schleyer, P.V.R.5
-
47
-
-
32144434172
-
-
however, NICS values can not be used as a single criterion for aromaticity; see: A. Stanger, J. Org. Chem. 2006, 71, 883-893, and references therein.
-
c) however, NICS values can not be used as a single criterion for aromaticity; see: A. Stanger, J. Org. Chem. 2006, 71, 883-893, and references therein.
-
-
-
-
48
-
-
84858492138
-
-
For comparison, the NICS(0) and NICS(1) values calculated for benzene at the B3LYP/6-31G(d)//B3LYP/6-31G(d) level are δ = -9.7 and -11.2 ppm, respectively.
-
For comparison, the NICS(0) and NICS(1) values calculated for benzene at the B3LYP/6-31G(d)//B3LYP/6-31G(d) level are δ = -9.7 and -11.2 ppm, respectively.
-
-
-
-
49
-
-
84858492139
-
-
Furthermore, comparison of the X-ray structure of compound 4 with that of compound 6[15] revealed that the bond lengths in the central ring are similar for the two compounds. Thus, the lengths of the exo C-C bonds are 1.469 Å in 6 and 1.463 Å in 4, and the lengths of the endo C-C bonds are 1.436 Å in 6 and 1.439 Å in 4. As aromaticity and antiaromaticity effects are irrelevant with respect to the central ring in 6, which is not planar, the central ring in compound 4 must also be non-aromatic, in accordance with the NICS results
-
[15] revealed that the bond lengths in the central ring are similar for the two compounds. Thus, the lengths of the exo C-C bonds are 1.469 Å in 6 and 1.463 Å in 4, and the lengths of the endo C-C bonds are 1.436 Å in 6 and 1.439 Å in 4. As aromaticity and antiaromaticity effects are irrelevant with respect to the central ring in 6, which is not planar, the central ring in compound 4 must also be non-aromatic, in accordance with the NICS results.
-
-
-
-
50
-
-
0000502724
-
-
therein, the pure sigma state is called a quasiclassical state
-
P. C. Hiberty, D. Danovich, A. Shurki, S. Shaik, J. Am. Chem. Soc. 1995, 117, 7760-7768; therein, the pure sigma state is called a quasiclassical state.
-
(1995)
J. Am. Chem. Soc
, vol.117
, pp. 7760-7768
-
-
Hiberty, P.C.1
Danovich, D.2
Shurki, A.3
Shaik, S.4
-
51
-
-
84858499852
-
-
The NICS(0) and NICS(1) values calculated at the B3LYP/6-31G(d)//B3LYP/6- 31G(d) level for the parent thiophene (δ = -13.5 and -10.5 ppm, respectively) are only slightly more negative than those for the thiophene rings in compound 4. The calculated NICS(0) and NICS(1) values for the parent selenophene are δ = -14.5 and -10.8 ppm, respectively.
-
The NICS(0) and NICS(1) values calculated at the B3LYP/6-31G(d)//B3LYP/6- 31G(d) level for the parent thiophene (δ = -13.5 and -10.5 ppm, respectively) are only slightly more negative than those for the thiophene rings in compound 4. The calculated NICS(0) and NICS(1) values for the parent selenophene are δ = -14.5 and -10.8 ppm, respectively.
-
-
-
-
54
-
-
0005853519
-
-
c) J. S. Siegel, Angew. Chem. 1994, 106, 1808-1810;
-
(1994)
Angew. Chem
, vol.106
, pp. 1808-1810
-
-
Siegel, J.S.1
-
56
-
-
17344379911
-
-
M. Trætteberg, P. Bakken, H. Hopf, T. Hopfner, J. Mol. Struct. 1998, 445, 99-105.
-
(1998)
J. Mol. Struct
, vol.445
, pp. 99-105
-
-
Trætteberg, M.1
Bakken, P.2
Hopf, H.3
Hopfner, T.4
-
58
-
-
0039894705
-
-
[34b] For the central rings of compounds 4 and 5, the Julg parameter is in the range 0.98-1.00, that is, close to 1, and corresponds to nearly complete bond-length equalization. This result may suggest aromaticity of the central six-membered ring. However, this equalization is a consequence of a small negative SIBL and can not be used as evidence for the aromaticity of compounds 4 and 5. a B. Goldfuss, P. von R. Schleyer, F. Hampel, Organometallics 1996, 15, 1755-1757;
-
[34b] For the central rings of compounds 4 and 5, the Julg parameter is in the range 0.98-1.00, that is, close to 1, and corresponds to nearly complete bond-length equalization. This result may suggest aromaticity of the central six-membered ring. However, this equalization is a consequence of a small negative SIBL and can not be used as evidence for the aromaticity of compounds 4 and 5. a) B. Goldfuss, P. von R. Schleyer, F. Hampel, Organometallics 1996, 15, 1755-1757;
-
-
-
-
60
-
-
0033625573
-
-
1 = 7.76 eV.
-
1 = 7.76 eV.
-
-
-
-
61
-
-
36749033699
-
-
Part of the blue shift results from the substitution of hydrogen atoms for carbon atoms at the 3- and 4-positions of the heterocycles. Indeed, the absorption calculated at the TD-B3LYP/6-31G(d) level for 3,4-dimethylthiophene (213.6 nm) is blue shifted by 0.12 eV relative to the calculated absorption for thiophene 209.2 nm, Thus, we can estimate a conjugation of 0.37 eV between thiophene rings in 4 on the basis of the UV spectra
-
Part of the blue shift results from the substitution of hydrogen atoms for carbon atoms at the 3- and 4-positions of the heterocycles. Indeed, the absorption calculated at the TD-B3LYP/6-31G(d) level for 3,4-dimethylthiophene (213.6 nm) is blue shifted by 0.12 eV relative to the calculated absorption for thiophene (209.2 nm). Thus, we can estimate a conjugation of 0.37 eV between thiophene rings in 4 on the basis of the UV spectra.
-
-
-
-
62
-
-
36749086962
-
-
The second calculated observable transition for compound 4 is at 256 nm. For compound 5, the corresponding calculated absorptions are at 319 and 268 nm. The calculated intensity (oscillator strength) of the second transition in 4 is 4.7 times stronger than that of the first transition, whereas for 5 the calculated intensity of the second transition is 3.7 times stronger than that of the first transition. These results are in excellent agreement with the data in Figure 2.
-
The second calculated observable transition for compound 4 is at 256 nm. For compound 5, the corresponding calculated absorptions are at 319 and 268 nm. The calculated intensity (oscillator strength) of the second transition in 4 is 4.7 times stronger than that of the first transition, whereas for 5 the calculated intensity of the second transition is 3.7 times stronger than that of the first transition. These results are in excellent agreement with the data in Figure 2.
-
-
-
-
63
-
-
36749004287
-
-
The antibonding combination contributes to the long exo C-C bonds in compounds 4 and 5.
-
The antibonding combination contributes to the long exo C-C bonds in compounds 4 and 5.
-
-
-
-
64
-
-
84858499848
-
-
The X-ray crystal structure of a charge-transfer complex of 4 with tetrafluorotetracyanoquinonedimethane TCNQF4, 4 2TCNQF4, has been reported: T. Sugano, T. Hashida, A. Kobayashi, H. Kobayashi, M. Kinoshita, Bull. Chem. Soc. Jpn. 1988, 61, 2303. In agreement with Figure 3, the transfer of half an electron from compound 4 to TCNQF4 results in an elongation of the endo and exo C-C bonds in compound 4, whereas the exocyclic C=C bonds remain practically unchanged. The endo, exo, and exocyclic C-C bonds in 42TCNQF4 have an average length of 1.427, 1.451, and 1.368 Å, respectively, and are thus 0.012, 0.012, and 0.003 Å shorter than the corresponding bonds in 4
-
4 have an average length of 1.427, 1.451, and 1.368 Å, respectively, and are thus 0.012, 0.012, and 0.003 Å shorter than the corresponding bonds in 4.
-
-
-
-
65
-
-
84858506285
-
-
[1,2]
-
[1,2]
-
-
-
-
66
-
-
84858492132
-
-
[17]
-
[17]
-
-
-
|