메뉴 건너뛰기




Volumn 196, Issue 1-3, 2008, Pages 379-392

A systematic solution methodology for inferential multivariate modelling of industrial grinding process

Author keywords

Artificial neural network; Grinding; Inferential multivariate modelling; Linear multivariate regression; Multiple response

Indexed keywords

FINISHING; LINEAR REGRESSION; MATHEMATICAL MODELS; NEURAL NETWORKS; PRODUCT DEVELOPMENT; QUALITY ASSURANCE; STRESS ANALYSIS;

EID: 36549063418     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmatprotec.2007.05.044     Document Type: Article
Times cited : (9)

References (36)
  • 2
    • 0000133998 scopus 로고
    • An analysis of transformations
    • Box G.E.P., and Cox D.R. An analysis of transformations. J. R. Stat. Soc. 26 Series B (1964) 211-252
    • (1964) J. R. Stat. Soc. , vol.26 , Issue.Series B , pp. 211-252
    • Box, G.E.P.1    Cox, D.R.2
  • 4
    • 0032003574 scopus 로고    scopus 로고
    • Fuzzy logic and neural network for design of process parameters: a grinding process application
    • Chen Y.T., and Kumara S.R.T. Fuzzy logic and neural network for design of process parameters: a grinding process application. Int. J. Prod. Res. 36 2 (1998) 395-415
    • (1998) Int. J. Prod. Res. , vol.36 , Issue.2 , pp. 395-415
    • Chen, Y.T.1    Kumara, S.R.T.2
  • 5
    • 0032205695 scopus 로고    scopus 로고
    • Static neural network process models: considerations and case studies
    • Coit D.W., Jackson B.T., and Smith A.E. Static neural network process models: considerations and case studies. Int. J. Prod. Res. 36 11 (1998) 2953-2967
    • (1998) Int. J. Prod. Res. , vol.36 , Issue.11 , pp. 2953-2967
    • Coit, D.W.1    Jackson, B.T.2    Smith, A.E.3
  • 6
    • 33744516187 scopus 로고    scopus 로고
    • Neural networks modelling of honing surface roughness parameter defined by ISO 13565
    • Feng C., Wang X., and Yu Z. Neural networks modelling of honing surface roughness parameter defined by ISO 13565. SIAM J. Manuf. Syst. 21 8 (2002) 1-35
    • (2002) SIAM J. Manuf. Syst. , vol.21 , Issue.8 , pp. 1-35
    • Feng, C.1    Wang, X.2    Yu, Z.3
  • 11
    • 0032834759 scopus 로고    scopus 로고
    • Modelling of abrasive flow machining process: a neural network approach
    • Jain R.K., Jain V.K., and Kalra P.K. Modelling of abrasive flow machining process: a neural network approach. Wear 231 (1999) 242-248
    • (1999) Wear , vol.231 , pp. 242-248
    • Jain, R.K.1    Jain, V.K.2    Kalra, P.K.3
  • 13
    • 10444274045 scopus 로고    scopus 로고
    • Application of Taguchi and response surface methodologies for geometric error in surface grinding process
    • Kwak J. Application of Taguchi and response surface methodologies for geometric error in surface grinding process. Int. J. Mach. Tools Manuf. 45 (2005) 327-334
    • (2005) Int. J. Mach. Tools Manuf. , vol.45 , pp. 327-334
    • Kwak, J.1
  • 14
    • 0034664161 scopus 로고    scopus 로고
    • Evolutionary modelling and optimization of grinding processes
    • Lee C.W., and Shin Y.C. Evolutionary modelling and optimization of grinding processes. Int. J. Prod. Res. 38 12 (2000) 2787-2831
    • (2000) Int. J. Prod. Res. , vol.38 , Issue.12 , pp. 2787-2831
    • Lee, C.W.1    Shin, Y.C.2
  • 15
    • 0029314021 scopus 로고
    • A neural-network system for predicting machining behaviour
    • Luong L.H.S., and Spedding T.A. A neural-network system for predicting machining behaviour. J. Mater. Process. Technol. 52 (1995) 585-591
    • (1995) J. Mater. Process. Technol. , vol.52 , pp. 585-591
    • Luong, L.H.S.1    Spedding, T.A.2
  • 17
    • 30344443674 scopus 로고    scopus 로고
    • Modeling of an industrial wet grinding operation using data-driven techniques
    • Mitra K., and Ghivari M. Modeling of an industrial wet grinding operation using data-driven techniques. Comput. Chem. Eng. 30 (2006) 508-520
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 508-520
    • Mitra, K.1    Ghivari, M.2
  • 20
    • 33744544029 scopus 로고    scopus 로고
    • A review of optimization techniques in metal cutting processes
    • Mukherjee I., and Ray P.K. A review of optimization techniques in metal cutting processes. Int. J. Comput. Ind. Eng. 50 (2006) 15-34
    • (2006) Int. J. Comput. Ind. Eng. , vol.50 , pp. 15-34
    • Mukherjee, I.1    Ray, P.K.2
  • 22
    • 36549086191 scopus 로고    scopus 로고
    • Metaheuristic strategies for non-linear multi-response grinding process optimization
    • Mukherjee I., and Ray P.K. Metaheuristic strategies for non-linear multi-response grinding process optimization. ICFAI J. Operat. Manage. 2 (2006) 35-56
    • (2006) ICFAI J. Operat. Manage. , vol.2 , pp. 35-56
    • Mukherjee, I.1    Ray, P.K.2
  • 23
    • 36549009278 scopus 로고    scopus 로고
    • Mukherjee, I., Ray, P.K., 2007. A modified Tabu search strategy for multiple-response grinding process optimization, Int. J. Intell. Syst. Technol. Appl. (IJISTA) (special issue on "Advanced Evolutionary Computational Techniques for Design, Manufacturing, Logistics and Supply Chain Problems").
  • 24
    • 0031706783 scopus 로고    scopus 로고
    • A neural network process model for abrasive flow machining operations
    • Petri K.L., Billo R.E., and Bidanda B. A neural network process model for abrasive flow machining operations. J. Manuf. Syst. 17 1 (1998) 52-64
    • (1998) J. Manuf. Syst. , vol.17 , Issue.1 , pp. 52-64
    • Petri, K.L.1    Billo, R.E.2    Bidanda, B.3
  • 27
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning representations by back-propagating errors. Nature 323 9 (1986) 533-536
    • (1986) Nature , vol.323 , Issue.9 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 28
    • 0026938576 scopus 로고
    • Neural network modelling and multiobjective optimization of creep feed grinding of superalloys
    • Sathyanarayanan G., Lin I.J., and Chen M. Neural network modelling and multiobjective optimization of creep feed grinding of superalloys. Int. J. Prod. Res. 30 10 (1992) 2421-2438
    • (1992) Int. J. Prod. Res. , vol.30 , Issue.10 , pp. 2421-2438
    • Sathyanarayanan, G.1    Lin, I.J.2    Chen, M.3
  • 29
    • 0030399542 scopus 로고    scopus 로고
    • Neuro-fuzzy control of complex manufacturing processes
    • Shin Y.C., and Vishnupad P. Neuro-fuzzy control of complex manufacturing processes. Int. J. Prod. Res. 34 12 (1996) 3291-3309
    • (1996) Int. J. Prod. Res. , vol.34 , Issue.12 , pp. 3291-3309
    • Shin, Y.C.1    Vishnupad, P.2
  • 32
    • 9944241272 scopus 로고    scopus 로고
    • Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion
    • Warne K., Prasad G., Rezvani S., and Maguire L. Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion. Eng. Appl. Artif. Intell. 17 (2004) 871-885
    • (2004) Eng. Appl. Artif. Intell. , vol.17 , pp. 871-885
    • Warne, K.1    Prasad, G.2    Rezvani, S.3    Maguire, L.4
  • 34
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh L.A. Fuzzy sets. Inf. Control 8 (1965) 338-353
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 36
    • 0015558134 scopus 로고
    • Outline of a new approach to the analysis of complex systems and decision processes
    • Zadeh L.A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybernet., SMC-3 (1973) 28-44
    • (1973) IEEE Trans. Syst. Man Cybernet., SMC-3 , pp. 28-44
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.