메뉴 건너뛰기




Volumn 196, Issue 1-3, 2008, Pages 115-119

Estimation of flow stress behavior of AA5083 using artificial neural networks with regard to dynamic strain ageing effect

Author keywords

Aluminum alloy; Flow stress; Mathematical modelling; Neural network

Indexed keywords

AGING OF MATERIALS; BACKPROPAGATION ALGORITHMS; FEEDFORWARD CONTROL; MATHEMATICAL MODELS; NEURAL NETWORKS; PLASTIC FLOW; STRAIN CONTROL;

EID: 36549061948     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmatprotec.2007.05.027     Document Type: Article
Times cited : (74)

References (10)
  • 1
    • 0033309515 scopus 로고    scopus 로고
    • Neural networks in materials science
    • Bhadeshia H.K.D.H. Neural networks in materials science. ISIJ Int. 39 10 (1999) 966-979
    • (1999) ISIJ Int. , vol.39 , Issue.10 , pp. 966-979
    • Bhadeshia, H.K.D.H.1
  • 2
    • 0742322877 scopus 로고    scopus 로고
    • Flow and fracture characteristics of aluminum alloy AA5083-H116 as function of strain rate, temperature and triaxility
    • Clausen A.H., and Borvik T. Flow and fracture characteristics of aluminum alloy AA5083-H116 as function of strain rate, temperature and triaxility. Mater. Sci Eng. A 364 (2004) 260-272
    • (2004) Mater. Sci Eng. A , vol.364 , pp. 260-272
    • Clausen, A.H.1    Borvik, T.2
  • 4
    • 0345359456 scopus 로고    scopus 로고
    • Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network
    • Guo Z., and Sha W. Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network. Comput. Mater. Sci. 29 (2004) 12-28
    • (2004) Comput. Mater. Sci. , vol.29 , pp. 12-28
    • Guo, Z.1    Sha, W.2
  • 5
    • 33646361038 scopus 로고    scopus 로고
    • Neural network constitutive model for rate-dependent materials
    • Jung S., and Ghaboussi J. Neural network constitutive model for rate-dependent materials. Comput. Struct. 84 (2006) 955-963
    • (2006) Comput. Struct. , vol.84 , pp. 955-963
    • Jung, S.1    Ghaboussi, J.2
  • 6
    • 26444494069 scopus 로고    scopus 로고
    • Use of artificial networks to predict the deformation behavior of Zr-2.5Nb-0.5Cu
    • Kapoor R., Pal D., and Chkaravartty J.K. Use of artificial networks to predict the deformation behavior of Zr-2.5Nb-0.5Cu. J. Mater. Proc. Tech. 169 (2005) 199-205
    • (2005) J. Mater. Proc. Tech. , vol.169 , pp. 199-205
    • Kapoor, R.1    Pal, D.2    Chkaravartty, J.K.3
  • 7
    • 1542574226 scopus 로고    scopus 로고
    • Analysis of Portevin-Le Chatelier serrations of type Bin Al-Mg
    • Klose F.B., and Ziegenbein A. Analysis of Portevin-Le Chatelier serrations of type Bin Al-Mg. Mater. Sci. Eng. A 369 (2004) 76-81
    • (2004) Mater. Sci. Eng. A , vol.369 , pp. 76-81
    • Klose, F.B.1    Ziegenbein, A.2
  • 8
    • 0033338136 scopus 로고    scopus 로고
    • Estimation of hot torsion stress strain curves in iron alloys using a neural network analysis
    • Narayan V., Abad R., Lopez B., Bhadesia H.K.D.H., and Mackay D.J.C. Estimation of hot torsion stress strain curves in iron alloys using a neural network analysis. ISIJ Int. 39 (1999) 999-1005
    • (1999) ISIJ Int. , vol.39 , pp. 999-1005
    • Narayan, V.1    Abad, R.2    Lopez, B.3    Bhadesia, H.K.D.H.4    Mackay, D.J.C.5
  • 9
    • 0344153743 scopus 로고    scopus 로고
    • Atomistic study of pipe diffusion in Al-Mg alloys
    • Picu R.C., and Zhang D. Atomistic study of pipe diffusion in Al-Mg alloys. Acta Mater. 52 (2004) 161-171
    • (2004) Acta Mater. , vol.52 , pp. 161-171
    • Picu, R.C.1    Zhang, D.2
  • 10
    • 0037570989 scopus 로고    scopus 로고
    • Serrated flow of aluminum alloys influenced by precipitates
    • Pink E., and Kumar S. Serrated flow of aluminum alloys influenced by precipitates. Mater. Sci. Eng. A 280 (2000) 17-24
    • (2000) Mater. Sci. Eng. A , vol.280 , pp. 17-24
    • Pink, E.1    Kumar, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.