-
44
-
-
0039955262
-
-
(1994)
Angew. Chem.
, vol.106
, pp. 2391
-
-
Steiner, D.1
Balzereit, C.2
Winkler, H.-J.3
Stamati, N.4
Hofmann, M.5
von, P.6
Schleyer, R.7
Massa, W.8
Berndt, A.9
-
65
-
-
84950525956
-
-
Ph.D. thesis, Vrije Universiteit, Amsterdam
-
(1993)
-
-
Nooijen, M.1
-
67
-
-
84950525954
-
-
the proper definition of the CC expectation value of an operator O is [formula omitted] with T as the cluster operator, [formula omitted] as the CC ket state, and [formula omitted] as the corresponding bra state with Λ as the appropriate deexcitation operator parametrized by the λ amplitudes
-
Following Ref. 41
-
-
-
70
-
-
36149014213
-
-
The theoretical foundation of the Z-vector method is the more general interchange theorem of double perturbation theory
-
(1953)
Phys. Rev.
, vol.92
, pp. 1460
-
-
Sternheimer, R.M.1
Foley, H.M.2
-
80
-
-
85034927009
-
-
This might be questioned, as the formulations given in Refs. 50 and 51 involve steps whose costs scale with the square of the number of perturbations, while in the approach advocated here all the cost of all computationally significant steps does only scale linearly with the number of perturbations submitted
-
J. Chem. Phys.
-
-
Stanton, J.F.1
Gauss, J.2
-
131
-
-
85034928327
-
-
For the linear molecules, the full shielding tensors can be obtained from knowledge of the isotropic and anisotropic shieldings. The same does not hold for [formula omitted] [formula omitted] and [formula omitted] so that their shielding tensors (as obtained at the GIAO-CCSD level) are given in the following: [formula omitted] [formula omitted] [formula omitted] [formula omitted] [formula omitted] [formula omitted] [formula omitted] [formula omitted] [formula omitted] with the calculation carried out using the following set of Cartesian coordinates (in a.u.): 0, 0, [formula omitted] (oxygen) and 0, [formula omitted] 0.984 293 54 (hydrogens) [formula omitted] [formula omitted] [formula omitted] [formula omitted] [formula omitted] [formula omitted] [formula omitted] with the calculation performed at the following geometry: 0, 0, [formula omitted] (nitrogen), [formula omitted] [formula omitted] [formula omitted] and 0, 1.771 670 23, 0.592 186 98 (hydrogens). The shielding tensor for H is given for the hydrogen in the [formula omitted] plane. [formula omitted] [formula omitted] [formula omitted] [formula omitted] with the calculation carried out with the following coordinates 0, 0, 0 (carbon), 0, [formula omitted] 1.183 772 02, and [formula omitted] 0, [formula omitted] (hydrogens). The [formula omitted] shielding tensor is given for the hydrogen with positive y and z coordinates
-
The hydrogen shielding tensor is given for the hydrogen with negative y coordinate
-
-
-
132
-
-
84950526140
-
-
The [formula omitted] basis consists for C, N, O of the [formula omitted] basis described in the text augmented by a single f function with exponents [formula omitted] for C, [formula omitted] for N, and [formula omitted] for O] from Ref. 91. For H, a [formula omitted] contraction (Ref. 90) augmented by two p function (for exponents and one d and f functions have been used. The optimized parameters are [formula omitted] [formula omitted] and [formula omitted] for [formula omitted] [formula omitted] [formula omitted] [formula omitted] and [formula omitted] for [formula omitted] and [formula omitted] and [formula omitted] for [formula omitted])
-
Ref. 92
-
-
-
133
-
-
85034916311
-
-
See, for example
-
Ref. 11
-
-
|