-
2
-
-
84972541993
-
A theorem on Noetherian hereditary rings
-
V. P. Camillo and J. Cozzens, A theorem on Noetherian hereditary rings, Pacific J. Math. 45 (1973), 35-41.
-
(1973)
Pacific J. Math
, vol.45
, pp. 35-41
-
-
Camillo, V.P.1
Cozzens, J.2
-
3
-
-
0002429556
-
Rings in which every complement right ideal is a direct summand
-
A. W. Chatters and C. R. Hajarnavis, Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford Ser. (2) 28 (1977), 61-80.
-
(1977)
Quart. J. Math. Oxford Ser. (2)
, vol.28
, pp. 61-80
-
-
Chatters, A.W.1
Hajarnavis, C.R.2
-
6
-
-
0009367414
-
Right principal Bezout domains
-
P. M. Cohn, Right principal Bezout domains, J. London Math. Soc. (2) 35 (1987), 251-262.
-
(1987)
J. London Math. Soc. (2)
, vol.35
, pp. 251-262
-
-
Cohn, P.M.1
-
9
-
-
0004287970
-
-
Longman Scientific & Technical, Harlow
-
N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending modules (Longman Scientific & Technical, Harlow, 1994).
-
(1994)
Extending modules
-
-
Dung, N.V.1
Huynh, D.V.2
Smith, P.F.3
Wisbauer, R.4
-
10
-
-
0003428411
-
-
Second Edition Krieger Publishing Company, Malabar
-
K. R. Goodearl, Von Neumann regular rings, Second Edition (Krieger Publishing Company, Malabar, 1991).
-
(1991)
Von Neumann regular rings
-
-
Goodearl, K.R.1
-
11
-
-
0036539361
-
On direct sums of extending modules and internal exchange property
-
K. Hanada, Y Kuratomi and K. Oshiro, On direct sums of extending modules and internal exchange property, J. Algebra 250 (2002), 115-133.
-
(2002)
J. Algebra
, vol.250
, pp. 115-133
-
-
Hanada, K.1
Kuratomi, Y.2
Oshiro, K.3
-
12
-
-
84963009291
-
Simple rings with uniform right ideals
-
R. Hart, Simple rings with uniform right ideals, J. London Math. Soc. 42 (1967), 614-617.
-
(1967)
J. London Math. Soc
, vol.42
, pp. 614-617
-
-
Hart, R.1
-
13
-
-
23044521741
-
On the symmetry of the Goldie and CS conditions for prime rings
-
D. V Huynh, S. K. Jain and S. R. López-Permouth, On the symmetry of the Goldie and CS conditions for prime rings, Proc. Amer. Math. Soc. 128 (2000), 3153-3157.
-
(2000)
Proc. Amer. Math. Soc
, vol.128
, pp. 3153-3157
-
-
Huynh, D.V.1
Jain, S.K.2
López-Permouth, S.R.3
-
14
-
-
0242329330
-
Prime Goldie rings of uniform dimension at least two and with all one-sided ideals CS are semihereditary
-
D. V. Huynh, S. K. Jain and S. R. López-Permouth, Prime Goldie rings of uniform dimension at least two and with all one-sided ideals CS are semihereditary, Comm. Algebra 31 (2003), 5355-5360.
-
(2003)
Comm. Algebra
, vol.31
, pp. 5355-5360
-
-
Huynh, D.V.1
Jain, S.K.2
López-Permouth, S.R.3
|