메뉴 건너뛰기




Volumn 59, Issue 4, 2007, Pages 655-673

Optimal designs for estimating the coefficients of the lower frequencies in trigonometric regression models

Author keywords

C Optimal design; Chebyshev approximation; Trigonometric regression model; Two dimensional shape analysis

Indexed keywords

CHEBYSHEV APPROXIMATION; MATHEMATICAL MODELS; OPTIMIZATION; PARAMETER ESTIMATION; TWO DIMENSIONAL;

EID: 36448979509     PISSN: 00203157     EISSN: 15729052     Source Type: Journal    
DOI: 10.1007/s10463-006-0068-2     Document Type: Article
Times cited : (12)

References (23)
  • 1
    • 0343237788 scopus 로고    scopus 로고
    • Quantiative evalution of apple (Malus x domestica Borkh.) fruit shape by prinicple component analysis of Fourier descriptors
    • Currie A.J., Ganeshanandam S., Noiton D.A., Garrick D., Shelbourne C.J.A., Oragguzie N. (2000). Quantiative evalution of apple (Malus x domestica Borkh.) fruit shape by prinicple component analysis of Fourier descriptors. Euphytica, 111: 219-227
    • (2000) Euphytica , vol.111 , pp. 219-227
    • Currie, A.J.1    Ganeshanandam, S.2    Noiton, D.A.3    Garrick, D.4    Shelbourne, C.J.A.5    Oragguzie, N.6
  • 2
    • 0012391717 scopus 로고    scopus 로고
    • Optimal designs for estimating individual coefficients in Fourier regression models
    • Dette H., Melas V.B., (2003). Optimal designs for estimating individual coefficients in Fourier regression models. The Annals of Statistics, 31, 1669-1692
    • (2003) The Annals of Statistics , vol.31 , pp. 1669-1692
    • Dette, H.1    Melas, V.B.2
  • 6
    • 0018163411 scopus 로고
    • A note on the equivalence of D-optimal design measures for three rival linear models
    • Hill P.D.H. (1978). A note on the equivalence of D-optimal design measures for three rival linear models. Biometrika, 65, 666-667
    • (1978) Biometrika , vol.65 , pp. 666-667
    • Hill, P.D.H.1
  • 9
    • 0000981128 scopus 로고
    • General equivalence theory for optimum designs (approximate theory)
    • Kiefer J. C. (1974). General equivalence theory for optimum designs (approximate theory). The Annals of Statistics, 2, 849-879
    • (1974) The Annals of Statistics , vol.2 , pp. 849-879
    • Kiefer, J.C.1
  • 11
    • 0000823651 scopus 로고
    • Optimal designs for trigonometric and polynomial regression.
    • Lau T.S., Studden W.J. (1985). Optimal designs for trigonometric and polynomial regression.The Annals of Statistics, 13, 383-394
    • (1985) The Annals of Statistics , vol.13 , pp. 383-394
    • Lau, T.S.1    Studden, W.J.2
  • 13
    • 0018530360 scopus 로고
    • Systematic and random errors in least squares estimation for circular contours
    • McCool J.I. (1979). Systematic and random errors in least squares estimation for circular contours. Precision Engineering, 1, 215-220
    • (1979) Precision Engineering , vol.1 , pp. 215-220
    • McCool, J.I.1
  • 15
    • 0001355083 scopus 로고
    • Efficient rounding of approximate designs
    • Pukelsheim F., Rieder S. (1992). Efficient rounding of approximate designs. Biometrika, 79, 763-770
    • (1992) Biometrika , vol.79 , pp. 763-770
    • Pukelsheim, F.1    Rieder, S.2
  • 17
    • 0039608905 scopus 로고
    • Good designs for testing the degree of a polynomial mean
    • Spruill M.C. (1990). Good designs for testing the degree of a polynomial mean. Sankhya, Series B, 52, 67-74
    • (1990) Sankhya, Series B , vol.52 , pp. 67-74
    • Spruill, M.C.1
  • 19
  • 20
    • 36448932849 scopus 로고
    • American Mathematical Society Colloquium Publications 23 Providence RI
    • Szegö G. (1959). Orthogonal polynomials. American Mathematical Society Colloquium Publications 23 Providence, RI
    • (1959) Orthogonal Polynomials
    • Szegö, G.1
  • 22
    • 0036660582 scopus 로고    scopus 로고
    • Optimal designs for first-order trigonometric regression on a partial circle
    • Wu H. (2002). Optimal designs for first-order trigonometric regression on a partial circle. Statistica Sinica, 12, 917-930
    • (2002) Statistica Sinica , vol.12 , pp. 917-930
    • Wu, H.1
  • 23
    • 0000144552 scopus 로고
    • Fourier biometrics: Harmonic amplitudes as multivariate shape descriptors
    • Young J.C., Ehrlich R. (1977). Fourier biometrics: harmonic amplitudes as multivariate shape descriptors. Systematic Zoology, 26, 336-342
    • (1977) Systematic Zoology , vol.26 , pp. 336-342
    • Young, J.C.1    Ehrlich, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.