메뉴 건너뛰기




Volumn 258, Issue 2, 2008, Pages 463-475

On syzygies of non-complete embedding of projective varieties

Author keywords

[No Author keywords available]

Indexed keywords


EID: 36448971253     PISSN: 00255874     EISSN: 14321823     Source Type: Journal    
DOI: 10.1007/s00209-007-0181-9     Document Type: Article
Times cited : (8)

References (14)
  • 1
    • 0013499018 scopus 로고    scopus 로고
    • On the k-normality of projected algebraic varieties
    • 1
    • Alzati A. and Russo F. (2002). On the k-normality of projected algebraic varieties. Bull. Braz. Math. Soc. (N.S.) 33(1): 27-48
    • (2002) Bull. Braz. Math. Soc. (N.S.) , vol.33 , pp. 27-48
    • Alzati, A.1    Russo, F.2
  • 2
    • 21344434260 scopus 로고    scopus 로고
    • Noncomplete linear systems on abelian varieties
    • 5
    • Birkenhake C. (1996). Noncomplete linear systems on abelian varieties. Trans. Am. Math. Soc. 348(5): 1885-1908
    • (1996) Trans. Am. Math. Soc. , vol.348 , pp. 1885-1908
    • Birkenhake, C.1
  • 3
    • 0001940327 scopus 로고
    • Sui multipli di une serie lineare di gruppi di punti appartenente ad une curva algebraic
    • 2
    • Castelnuovo G. (1893). Sui multipli di une serie lineare di gruppi di punti appartenente ad une curva algebraic. Rend. Circ. Mat. Palermo 7(2): 89-110
    • (1893) Rend. Circ. Mat. Palermo , vol.7 , pp. 89-110
    • Castelnuovo, G.1
  • 5
    • 0002080418 scopus 로고
    • Linear free resolutions and minimal multiplicity
    • Eisenbud D., Goto S. (1984). Linear free resolutions and minimal multiplicity. J. Algebra 88: 89-133
    • (1984) J. Algebra , vol.88 , pp. 89-133
    • Eisenbud, D.1    Goto, S.2
  • 6
    • 33745664089 scopus 로고    scopus 로고
    • Restriction linear syzygies: Algebra and geometry
    • Eisenbud D., Green M., Hulek K. and Popescu S. (2005). Restriction linear syzygies: algebra and geometry. Compos. Math. 141: 1460-1478
    • (2005) Compos. Math. , vol.141 , pp. 1460-1478
    • Eisenbud, D.1    Green, M.2    Hulek, K.3    Popescu, S.4
  • 7
    • 33646856073 scopus 로고
    • Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension
    • Ein L. and Lazarsfeld R. (1993). Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension. Invent. math. 111: 51-67
    • (1993) Invent. Math. , vol.111 , pp. 51-67
    • Ein, L.1    Lazarsfeld, R.2
  • 8
    • 84972544398 scopus 로고
    • Koszul cohomology and the geometry of projective varieties
    • Green M. (1984). Koszul cohomology and the geometry of projective varieties. J. Differ. Geom. 19: 125-171
    • (1984) J. Differ. Geom. , vol.19 , pp. 125-171
    • Green, M.1
  • 9
    • 21644480769 scopus 로고    scopus 로고
    • p on the higher normality and defining equations of nonlinearly normal varieties
    • p on the higher normality and defining equations of nonlinearly normal varieties. J. Reine Angew. Math. 582: 87-105
    • (2005) J. Reine Angew. Math. , vol.582 , pp. 87-105
    • Kwak, S.1    Park, E.2
  • 11
    • 0001472071 scopus 로고
    • Lectures on curves on an algebraic surface
    • Mumford D. (1966). Lectures on curves on an algebraic surface. Ann. Math. Stud. 59: 87
    • (1966) Ann. Math. Stud. , vol.59 , pp. 87
    • Mumford, D.1
  • 12
    • 33746327763 scopus 로고    scopus 로고
    • On higher syzygies of ruled surfaces
    • Park E. (2006). On higher syzygies of ruled surfaces. Trans. Am. Math. Soc. 358: 3733-3749
    • (2006) Trans. Am. Math. Soc. , vol.358 , pp. 3733-3749
    • Park, E.1
  • 13
    • 34247328150 scopus 로고    scopus 로고
    • Projectivce curves of degree=codimension+2
    • Park E. (2007). Projectivce curves of degree=codimension+2. Math. Zeit. 256: 685-697
    • (2007) Math. Zeit. , vol.256 , pp. 685-697
    • Park, E.1
  • 14
    • 34249296356 scopus 로고    scopus 로고
    • Smooth varieties of almost minimal degree
    • doi:10.1016/j.jalgebra.2007. 02.027
    • Park, E.: Smooth varieties of almost minimal degree. J. Algebra (2007), doi:10.1016/j.jalgebra.2007. 02.027
    • (2007) J. Algebra
    • Park, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.