-
1
-
-
0003259517
-
-
IEEE, New York
-
C. H. Bennett and G. Brassard, Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, New York, 1984), pp. 175-179.
-
(1984)
Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing
, pp. 175-179
-
-
Bennett, C.H.1
Brassard, G.2
-
2
-
-
0343152990
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.67.661
-
A. K. Ekert, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.67.661 67, 661 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 661
-
-
Ekert, A.K.1
-
3
-
-
0036013605
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.74.145
-
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.74.145 74, 145 (2002).
-
(2002)
Rev. Mod. Phys.
, vol.74
, pp. 145
-
-
Gisin, N.1
Ribordy, G.2
Tittel, W.3
Zbinden, H.4
-
4
-
-
3042730516
-
-
0004-5411;
-
D. Mayers, J. ACM 48, 351 (2001) 0004-5411
-
(2001)
J. ACM
, vol.48
, pp. 351
-
-
Mayers, D.1
-
5
-
-
0033605546
-
-
SCIEAS 0036-8075 10.1126/science.283.5410.2050
-
H.-K. Lo and H. F. Chau, Science SCIEAS 0036-8075 10.1126/science.283. 5410.2050 283, 2050 (1999)
-
(1999)
Science
, vol.283
, pp. 2050
-
-
Lo, H.-K.1
Chau, H.F.2
-
7
-
-
0347090658
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.85.441
-
P. W. Shor and J. Preskill, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.441 85, 441 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 441
-
-
Shor, P.W.1
Preskill, J.2
-
8
-
-
0037448569
-
-
NATUAS 0028-0836 10.1038/nature01289
-
F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Nature (London) NATUAS 0028-0836 10.1038/nature01289 421, 238 (2003).
-
(2003)
Nature (London)
, vol.421
, pp. 238
-
-
Grosshans, F.1
Assche, G.V.2
Wenger, J.3
Brouri, R.4
Cerf, N.J.5
Grangier, P.6
-
9
-
-
28844440400
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.72.050303
-
J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.72.050303 72, 050303 (R) (2005).
-
(2005)
Phys. Rev. A
, vol.72
, pp. 050303
-
-
Lodewyck, J.1
Debuisschert, T.2
Tualle-Brouri, R.3
Grangier, P.4
-
11
-
-
34948846190
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.76.042305
-
J. Lodewyck, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.76.042305 76, 042305 (2007).
-
(2007)
Phys. Rev. A
, vol.76
, pp. 042305
-
-
Lodewyck, J.1
-
12
-
-
2342614758
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.117901
-
R. Namiki and T. Hirano, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.117901 92, 117901 (2004)
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 117901
-
-
Namiki, R.1
Hirano, T.2
-
13
-
-
34547901704
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.76.022313
-
M. Heid and N. Lütkenhaus, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.76.022313 76, 022313 (2007).
-
(2007)
Phys. Rev. A
, vol.76
, pp. 022313
-
-
Heid, M.1
Lütkenhaus, N.2
-
14
-
-
0041415963
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.91.057901
-
W.-Y. Hwang, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91. 057901 91, 057901 (2003)
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 057901
-
-
Hwang, W.-Y.1
-
15
-
-
5044243044
-
-
H.-K. Lo, in Proceedings of IEEE ISIT 2004 (IEEE, New York, 2004), p. 137
-
-
-
Lo, H.-K.1
-
16
-
-
27744479495
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.230504
-
H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.230504 94, 230504 (2005)
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 230504
-
-
Lo, H.-K.1
Ma, X.2
Chen, K.3
-
17
-
-
27744568650
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.230503
-
X.-B. Wang, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94. 230503 94, 230503 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 230503
-
-
Wang, X.-B.1
-
18
-
-
27144453296
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.72.012326
-
X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.72.012326 72, 012326 (2005).
-
(2005)
Phys. Rev. A
, vol.72
, pp. 012326
-
-
Ma, X.1
Qi, B.2
Zhao, Y.3
Lo, H.-K.4
-
19
-
-
33344454530
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.070502
-
Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.070502 96, 070502 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 070502
-
-
Zhao, Y.1
Qi, B.2
Ma, X.3
Lo, H.-K.4
Qian, L.5
-
20
-
-
36448987777
-
-
We remark that new types of single photon detectors (SPDs), such as superconductor SPDs, could have high efficiency at telecommunication wavelength.
-
We remark that new types of single photon detectors (SPDs), such as superconductor SPDs, could have high efficiency at telecommunication wavelength.
-
-
-
-
22
-
-
0001029189
-
-
OPLEDP 0146-9592 10.1364/OL.26.001714
-
H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, Opt. Lett. OPLEDP 0146-9592 10.1364/OL.26.001714 26, 1714 (2001).
-
(2001)
Opt. Lett.
, vol.26
, pp. 1714
-
-
Hansen, H.1
Aichele, T.2
Hettich, C.3
Lodahl, P.4
Lvovsky, A.I.5
Mlynek, J.6
Schiller, S.7
-
23
-
-
33646593183
-
-
OPEXFF 1094-4087 10.1364/OE.14.004264
-
B. Qi, L.-L. Huang, H.-K. Lo, and L. Qian, Opt. Express OPEXFF 1094-4087 10.1364/OE.14.004264 14, 4264 (2006).
-
(2006)
Opt. Express
, vol.14
, pp. 4264
-
-
Qi, B.1
Huang, L.-L.2
Lo, H.-K.3
Qian, L.4
-
24
-
-
36448945682
-
-
Assume that the phase drift of MZI 0 1. In the phase coding BB84 QKD, the resulting QBER is roughly equal to 02. In practice, a 1% error rate is acceptable (the secure bound on QBER is about 20% for two-way classical communication
-
Assume that the phase drift of MZI 0 1. In the phase coding BB84 QKD, the resulting QBER is roughly equal to 02. In practice, a 1% error rate is acceptable (the secure bound on QBER is about 20% for two-way classical communication [
-
-
-
-
26
-
-
0036997507
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.66.060302
-
H. F. Chau, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.66.060302 66, 060302 (R) (2002)
-
(2002)
Phys. Rev. A
, vol.66
, pp. 060302
-
-
Chau, H.F.1
-
27
-
-
33644944449
-
-
JPHAC5 0305-4470 10.1088/0305-4470/39/7/014
-
K. S. Ranade and G. Alber, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/39/7/014 39, 1701 (2006)]
-
(2006)
J. Phys. A
, vol.39
, pp. 1701
-
-
Ranade, K.S.1
Alber, G.2
-
28
-
-
36448986260
-
-
and corresponds to 0 =0.1). In GMCS QKD, Bob's measurement result of X quadrature becomes X′ =Xcos 0 +Psin 0. If 0 1 and its change during the time of one frame transmission (40 ms in our experiment) is negligible, the excess noise contributed by the phase drift can be estimated by (X′ -X) 2 P2 02 = VA 02. With a modulation variance of VA =20, a 0.1 phase drift will result in an excess noise of 0.2. Note that the secure bound (of excess noise) for a reverse reconciliation protocol is around 0.5. An excess noise of 0.2 would lower the secure key rate dramatically. In our system, numerical simulation shows that the secure key rate would drop from 0.3 bit pulse to 0.1 bit pulse.
-
and corresponds to 0 =0.1). In GMCS QKD, Bob's measurement result of X quadrature becomes X′ =Xcos 0 +Psin 0. If 0 1 and its change during the time of one frame transmission (40 ms in our experiment) is negligible, the excess noise contributed by the phase drift can be estimated by (X′ -X) 2 P2 02 = VA 02. With a modulation variance of VA =20, a 0.1 phase drift will result in an excess noise of 0.2. Note that the secure bound (of excess noise) for a reverse reconciliation protocol is around 0.5. An excess noise of 0.2 would lower the secure key rate dramatically. In our system, numerical simulation shows that the secure key rate would drop from 0.3 bit pulse to 0.1 bit pulse.
-
-
-
-
29
-
-
27744528036
-
-
OPLEDP 0146-9592 10.1364/OL.30.002632
-
X.-F. Mo, B. Zhu, Z.-F. Han, Y.-Z. Gui, and G.-C. Guo, Opt. Lett. OPLEDP 0146-9592 10.1364/OL.30.002632 30, 2632 (2005).
-
(2005)
Opt. Lett.
, vol.30
, pp. 2632
-
-
Mo, X.-F.1
Zhu, B.2
Han, Z.-F.3
Gui, Y.-Z.4
Guo, G.-C.5
-
30
-
-
36448997629
-
-
The channel efficiency G was calibrated by using a strong laser pulse and a power meter. To calibrate the total efficiency of Bob's device η, a strong laser was fed into Bob's system, while the output of the photodiode was measured with a calibrated transimpedance amplifier.
-
The channel efficiency G was calibrated by using a strong laser pulse and a power meter. To calibrate the total efficiency of Bob's device η, a strong laser was fed into Bob's system, while the output of the photodiode was measured with a calibrated transimpedance amplifier.
-
-
-
-
31
-
-
34247844354
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.75.052304
-
B. Qi, Y. Zhao, X. Ma, H.-K. Lo, and L. Qian, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.052304 75, 052304 (2007).
-
(2007)
Phys. Rev. A
, vol.75
, pp. 052304
-
-
Qi, B.1
Zhao, Y.2
Ma, X.3
Lo, H.-K.4
Qian, L.5
-
32
-
-
36448940006
-
-
In this semiclassical picture, a coherent laser pulse can be treated as a classical electromagnetic wave plus the vacuum noise. Since we are estimating the excess noise (the noise above vacuum noise) here, we can treat the leakage LE classically.
-
In this semiclassical picture, a coherent laser pulse can be treated as a classical electromagnetic wave plus the vacuum noise. Since we are estimating the excess noise (the noise above vacuum noise) here, we can treat the leakage LE classically.
-
-
-
-
33
-
-
36448960062
-
-
In BB84 QKD with a perfect single photon source, the secure key rate is given by R= 1 2 Q1 [1-f (e1) H2 (e1) - H2 (e1)]. Here Q1 is the overall gain. e1 is the QBER. f (x) is the bidirectional error correction efficiency and H2 (x) is the binary entropy function. Assuming e1 =3% and f (e1) =1.22, a 10% error on determining e1 will result in a 3% change of the secure key rate, which is tolerable. In decoy QKD, the equation for calculating the secure key rate is more complicated. Nevertheless, as we showed in Ref. moderate errors on determining system parameters are acceptable.
-
In BB84 QKD with a perfect single photon source, the secure key rate is given by R= 1 2 Q1 [1-f (e1) H2 (e1) - H2 (e1)]. Here Q1 is the overall gain. e1 is the QBER. f (x) is the bidirectional error correction efficiency and H2 (x) is the binary entropy function. Assuming e1 =3% and f (e1) =1.22, a 10% error on determining e1 will result in a 3% change of the secure key rate, which is tolerable. In decoy QKD, the equation for calculating the secure key rate is more complicated. Nevertheless, as we showed in Ref. moderate errors on determining system parameters are acceptable.
-
-
-
-
34
-
-
36448949295
-
-
This is illustrated in Fig. 4. Note the similarity between Fig. 4 (experimental results) and Fig. 4 (simulation result under the assumption of no excess noise).
-
This is illustrated in Fig. 4. Note the similarity between Fig. 4 (experimental results) and Fig. 4 (simulation result under the assumption of no excess noise).
-
-
-
|