메뉴 건너뛰기




Volumn 76, Issue 5, 2007, Pages

Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers

Author keywords

[No Author keywords available]

Indexed keywords

ACOUSTIC VARIABLES CONTROL; GAUSSIAN NOISE (ELECTRONIC); LIGHT MODULATION; POLARIZATION; SIGNAL ANALYSIS; TELECOMMUNICATION SYSTEMS;

EID: 36448962010     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.76.052323     Document Type: Article
Times cited : (242)

References (34)
  • 2
    • 0343152990 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.67.661
    • A. K. Ekert, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.67.661 67, 661 (1991).
    • (1991) Phys. Rev. Lett. , vol.67 , pp. 661
    • Ekert, A.K.1
  • 4
    • 3042730516 scopus 로고    scopus 로고
    • 0004-5411;
    • D. Mayers, J. ACM 48, 351 (2001) 0004-5411
    • (2001) J. ACM , vol.48 , pp. 351
    • Mayers, D.1
  • 5
    • 0033605546 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.283.5410.2050
    • H.-K. Lo and H. F. Chau, Science SCIEAS 0036-8075 10.1126/science.283. 5410.2050 283, 2050 (1999)
    • (1999) Science , vol.283 , pp. 2050
    • Lo, H.-K.1    Chau, H.F.2
  • 7
    • 0347090658 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.85.441
    • P. W. Shor and J. Preskill, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.441 85, 441 (2000).
    • (2000) Phys. Rev. Lett. , vol.85 , pp. 441
    • Shor, P.W.1    Preskill, J.2
  • 11
    • 34948846190 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.76.042305
    • J. Lodewyck, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.76.042305 76, 042305 (2007).
    • (2007) Phys. Rev. A , vol.76 , pp. 042305
    • Lodewyck, J.1
  • 12
    • 2342614758 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.92.117901
    • R. Namiki and T. Hirano, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.117901 92, 117901 (2004)
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 117901
    • Namiki, R.1    Hirano, T.2
  • 13
    • 34547901704 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.76.022313
    • M. Heid and N. Lütkenhaus, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.76.022313 76, 022313 (2007).
    • (2007) Phys. Rev. A , vol.76 , pp. 022313
    • Heid, M.1    Lütkenhaus, N.2
  • 14
    • 0041415963 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.91.057901
    • W.-Y. Hwang, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91. 057901 91, 057901 (2003)
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 057901
    • Hwang, W.-Y.1
  • 15
    • 5044243044 scopus 로고    scopus 로고
    • H.-K. Lo, in Proceedings of IEEE ISIT 2004 (IEEE, New York, 2004), p. 137
    • Lo, H.-K.1
  • 16
    • 27744479495 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.94.230504
    • H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.230504 94, 230504 (2005)
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 230504
    • Lo, H.-K.1    Ma, X.2    Chen, K.3
  • 17
    • 27744568650 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.94.230503
    • X.-B. Wang, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94. 230503 94, 230503 (2005).
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 230503
    • Wang, X.-B.1
  • 18
    • 27144453296 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.72.012326
    • X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.72.012326 72, 012326 (2005).
    • (2005) Phys. Rev. A , vol.72 , pp. 012326
    • Ma, X.1    Qi, B.2    Zhao, Y.3    Lo, H.-K.4
  • 19
    • 33344454530 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.96.070502
    • Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.070502 96, 070502 (2006).
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 070502
    • Zhao, Y.1    Qi, B.2    Ma, X.3    Lo, H.-K.4    Qian, L.5
  • 20
    • 36448987777 scopus 로고    scopus 로고
    • We remark that new types of single photon detectors (SPDs), such as superconductor SPDs, could have high efficiency at telecommunication wavelength.
    • We remark that new types of single photon detectors (SPDs), such as superconductor SPDs, could have high efficiency at telecommunication wavelength.
  • 23
    • 33646593183 scopus 로고    scopus 로고
    • OPEXFF 1094-4087 10.1364/OE.14.004264
    • B. Qi, L.-L. Huang, H.-K. Lo, and L. Qian, Opt. Express OPEXFF 1094-4087 10.1364/OE.14.004264 14, 4264 (2006).
    • (2006) Opt. Express , vol.14 , pp. 4264
    • Qi, B.1    Huang, L.-L.2    Lo, H.-K.3    Qian, L.4
  • 24
    • 36448945682 scopus 로고    scopus 로고
    • Assume that the phase drift of MZI 0 1. In the phase coding BB84 QKD, the resulting QBER is roughly equal to 02. In practice, a 1% error rate is acceptable (the secure bound on QBER is about 20% for two-way classical communication
    • Assume that the phase drift of MZI 0 1. In the phase coding BB84 QKD, the resulting QBER is roughly equal to 02. In practice, a 1% error rate is acceptable (the secure bound on QBER is about 20% for two-way classical communication [
  • 25
    • 0037319628 scopus 로고    scopus 로고
    • IETTAW 0018-9448 10.1109/TIT.2002.807289
    • D. Gottesman and H.-K. Lo, IEEE Trans. Inf. Theory IETTAW 0018-9448 10.1109/TIT.2002.807289 49, 457 (2003)
    • (2003) IEEE Trans. Inf. Theory , vol.49 , pp. 457
    • Gottesman, D.1    Lo, H.-K.2
  • 26
    • 0036997507 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.66.060302
    • H. F. Chau, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.66.060302 66, 060302 (R) (2002)
    • (2002) Phys. Rev. A , vol.66 , pp. 060302
    • Chau, H.F.1
  • 27
    • 33644944449 scopus 로고    scopus 로고
    • JPHAC5 0305-4470 10.1088/0305-4470/39/7/014
    • K. S. Ranade and G. Alber, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/39/7/014 39, 1701 (2006)]
    • (2006) J. Phys. A , vol.39 , pp. 1701
    • Ranade, K.S.1    Alber, G.2
  • 28
    • 36448986260 scopus 로고    scopus 로고
    • and corresponds to 0 =0.1). In GMCS QKD, Bob's measurement result of X quadrature becomes X′ =Xcos 0 +Psin 0. If 0 1 and its change during the time of one frame transmission (40 ms in our experiment) is negligible, the excess noise contributed by the phase drift can be estimated by (X′ -X) 2 P2 02 = VA 02. With a modulation variance of VA =20, a 0.1 phase drift will result in an excess noise of 0.2. Note that the secure bound (of excess noise) for a reverse reconciliation protocol is around 0.5. An excess noise of 0.2 would lower the secure key rate dramatically. In our system, numerical simulation shows that the secure key rate would drop from 0.3 bit pulse to 0.1 bit pulse.
    • and corresponds to 0 =0.1). In GMCS QKD, Bob's measurement result of X quadrature becomes X′ =Xcos 0 +Psin 0. If 0 1 and its change during the time of one frame transmission (40 ms in our experiment) is negligible, the excess noise contributed by the phase drift can be estimated by (X′ -X) 2 P2 02 = VA 02. With a modulation variance of VA =20, a 0.1 phase drift will result in an excess noise of 0.2. Note that the secure bound (of excess noise) for a reverse reconciliation protocol is around 0.5. An excess noise of 0.2 would lower the secure key rate dramatically. In our system, numerical simulation shows that the secure key rate would drop from 0.3 bit pulse to 0.1 bit pulse.
  • 30
    • 36448997629 scopus 로고    scopus 로고
    • The channel efficiency G was calibrated by using a strong laser pulse and a power meter. To calibrate the total efficiency of Bob's device η, a strong laser was fed into Bob's system, while the output of the photodiode was measured with a calibrated transimpedance amplifier.
    • The channel efficiency G was calibrated by using a strong laser pulse and a power meter. To calibrate the total efficiency of Bob's device η, a strong laser was fed into Bob's system, while the output of the photodiode was measured with a calibrated transimpedance amplifier.
  • 31
    • 34247844354 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.75.052304
    • B. Qi, Y. Zhao, X. Ma, H.-K. Lo, and L. Qian, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.052304 75, 052304 (2007).
    • (2007) Phys. Rev. A , vol.75 , pp. 052304
    • Qi, B.1    Zhao, Y.2    Ma, X.3    Lo, H.-K.4    Qian, L.5
  • 32
    • 36448940006 scopus 로고    scopus 로고
    • In this semiclassical picture, a coherent laser pulse can be treated as a classical electromagnetic wave plus the vacuum noise. Since we are estimating the excess noise (the noise above vacuum noise) here, we can treat the leakage LE classically.
    • In this semiclassical picture, a coherent laser pulse can be treated as a classical electromagnetic wave plus the vacuum noise. Since we are estimating the excess noise (the noise above vacuum noise) here, we can treat the leakage LE classically.
  • 33
    • 36448960062 scopus 로고    scopus 로고
    • In BB84 QKD with a perfect single photon source, the secure key rate is given by R= 1 2 Q1 [1-f (e1) H2 (e1) - H2 (e1)]. Here Q1 is the overall gain. e1 is the QBER. f (x) is the bidirectional error correction efficiency and H2 (x) is the binary entropy function. Assuming e1 =3% and f (e1) =1.22, a 10% error on determining e1 will result in a 3% change of the secure key rate, which is tolerable. In decoy QKD, the equation for calculating the secure key rate is more complicated. Nevertheless, as we showed in Ref. moderate errors on determining system parameters are acceptable.
    • In BB84 QKD with a perfect single photon source, the secure key rate is given by R= 1 2 Q1 [1-f (e1) H2 (e1) - H2 (e1)]. Here Q1 is the overall gain. e1 is the QBER. f (x) is the bidirectional error correction efficiency and H2 (x) is the binary entropy function. Assuming e1 =3% and f (e1) =1.22, a 10% error on determining e1 will result in a 3% change of the secure key rate, which is tolerable. In decoy QKD, the equation for calculating the secure key rate is more complicated. Nevertheless, as we showed in Ref. moderate errors on determining system parameters are acceptable.
  • 34
    • 36448949295 scopus 로고    scopus 로고
    • This is illustrated in Fig. 4. Note the similarity between Fig. 4 (experimental results) and Fig. 4 (simulation result under the assumption of no excess noise).
    • This is illustrated in Fig. 4. Note the similarity between Fig. 4 (experimental results) and Fig. 4 (simulation result under the assumption of no excess noise).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.