-
1
-
-
0035530955
-
Multi-pulse solutions to Navier-Stokes problem between parallel planes
-
L. Afendikov and A. Mielke, Multi-pulse solutions to Navier-Stokes problem between parallel planes, Z. Angew. Math. Phys. 52 (2001), 79-100.
-
(2001)
Z. Angew. Math. Phys
, vol.52
, pp. 79-100
-
-
Afendikov, L.1
Mielke, A.2
-
2
-
-
17144367351
-
Dynamical properties of spatially non-decaying 2D Navier-Stokes flows with Kolmogorov forcing in an infinite strip
-
L. Afendikov and A. Mielke, Dynamical properties of spatially non-decaying 2D Navier-Stokes flows with Kolmogorov forcing in an infinite strip, J. Math. Fluid Mech 7, suppl. 1 (2005), 51-67.
-
(2005)
J. Math. Fluid Mech
, vol.7
, Issue.SUPPL. 1
, pp. 51-67
-
-
Afendikov, L.1
Mielke, A.2
-
3
-
-
0011360475
-
On the strong solvability of the Navier-Stokes equations
-
H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid. Mech. 2 (2000), 16-98.
-
(2000)
J. Math. Fluid. Mech
, vol.2
, pp. 16-98
-
-
Amann, H.1
-
4
-
-
36448943349
-
Asymptotic expansions at infinity of a strongly perturbed Poiseuille flow
-
A. Babin, Asymptotic expansions at infinity of a strongly perturbed Poiseuille flow, Adv. Soviet Math. 10 (1992), 1-83.
-
(1992)
Adv. Soviet Math
, vol.10
, pp. 1-83
-
-
Babin, A.1
-
5
-
-
0002220602
-
The attractor of a Navier-Stokes system in an unbounded channel-like domain
-
A. Babin, The attractor of a Navier-Stokes system in an unbounded channel-like domain, J. Dynam. Differential Equations 4 (1992), 555-584.
-
(1992)
J. Dynam. Differential Equations
, vol.4
, pp. 555-584
-
-
Babin, A.1
-
7
-
-
84972273463
-
Attractors of partial differential evolution equations in an unbounded domain
-
A. Babin and M. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 221-243.
-
(1990)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.116
, pp. 221-243
-
-
Babin, A.1
Vishik, M.2
-
8
-
-
1642485066
-
Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation
-
M. Efendiev, A. Miranville and S. Zelik, Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. London A. 460 (2004), 1107-1129.
-
(2004)
Proc. R. Soc. London A
, vol.460
, pp. 1107-1129
-
-
Efendiev, M.1
Miranville, A.2
Zelik, S.3
-
9
-
-
0000129210
-
Upper and lower bounds for the Kolmogorov entropy of the attractor for an RDE in an unbounded domain
-
M. Efendiev and S. Zelik, Upper and lower bounds for the Kolmogorov entropy of the attractor for an RDE in an unbounded domain, J. Dyn. Difi Eqns, 14 (2002) 369-403.
-
(2002)
J. Dyn. Difi Eqns
, vol.14
, pp. 369-403
-
-
Efendiev, M.1
Zelik, S.2
-
10
-
-
85121160112
-
-
M. Efendiev M. and S. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math. 54 (2001), 625-688.
-
M. Efendiev M. and S. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math. 54 (2001), 625-688.
-
-
-
-
12
-
-
0141527822
-
Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity
-
Y. Giga, S. Matsui and O. Sawada, Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity, J. Math. Fluid Mech. 3 (2001), 302-315.
-
(2001)
J. Math. Fluid Mech
, vol.3
, pp. 302-315
-
-
Giga, Y.1
Matsui, S.2
Sawada, O.3
-
13
-
-
0001933877
-
Water waves for small surface tension: An approach via normal form
-
G. Iooss and K. Kirchgässner, Water waves for small surface tension: an approach via normal form, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), 267-299.
-
(1992)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.122
, pp. 267-299
-
-
Iooss, G.1
Kirchgässner, K.2
-
14
-
-
34249918820
-
Bifurcating time-periodic solutions of Navier-Stokes equations in infinite cylinders
-
G. Iooss and A. Mielke, Bifurcating time-periodic solutions of Navier-Stokes equations in infinite cylinders, J. Nonlinear Sci. 1 (1991), 107-146.
-
(1991)
J. Nonlinear Sci
, vol.1
, pp. 107-146
-
-
Iooss, G.1
Mielke, A.2
-
15
-
-
49049138209
-
Wave solutions of reversible systems and applications
-
K. Kirchgässner, Wave solutions of reversible systems and applications, J. Diff. Eqns. 45 (1982), 113-127.
-
(1982)
J. Diff. Eqns
, vol.45
, pp. 113-127
-
-
Kirchgässner, K.1
-
16
-
-
36448967579
-
-
O. Ladyzhanskaya, V. Solonnikov and N. Uraltseva, Linear and quasilinear equations of parabolic type (Moscow: Izdat Nanka, 1968).
-
O. Ladyzhanskaya, V. Solonnikov and N. Uraltseva, Linear and quasilinear equations of parabolic type (Moscow: Izdat "Nanka", 1968).
-
-
-
-
17
-
-
67649370945
-
The Ginzburg-Landau equation in its role as a modulation equation
-
ed. by B. Fiedler, Elsevier
-
A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation, Handbook of dynamical systems (ed. by B. Fiedler), Elsevier (2002), 759-834.
-
(2002)
Handbook of dynamical systems
, pp. 759-834
-
-
Mielke, A.1
-
18
-
-
0000454926
-
Attractors for modulation equations on unbounded domains - existence and comparison
-
A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains - existence and comparison, Nonlinearity 8 (1995), 743-768.
-
(1995)
Nonlinearity
, vol.8
, pp. 743-768
-
-
Mielke, A.1
Schneider, G.2
-
20
-
-
0012854771
-
Topological vector spaces
-
Second edition, Springer-Verlag
-
H. Schaefer and M. Wolff, Topological vector spaces. Second edition. Graduate Texts in Mathematics, No. 3 (Springer-Verlag 1999).
-
(1999)
Graduate Texts in Mathematics
, Issue.3
-
-
Schaefer, H.1
Wolff, M.2
-
21
-
-
0033548773
-
Global existence results for pattern formation processes in infinite cylindrical domains. Applications to 3D Navier-Stokes problem
-
G. Schneider, Global existence results for pattern formation processes in infinite cylindrical domains. Applications to 3D Navier-Stokes problem, J. Math. Pures. Appl. 78 (1999), 265-312.
-
(1999)
J. Math. Pures. Appl
, vol.78
, pp. 265-312
-
-
Schneider, G.1
-
22
-
-
0141955991
-
Almost global existence and transient self-similar decay for Poiseuille flow at criticality for exponentially long times
-
G. Schneider and H. Uecker Almost global existence and transient self-similar decay for Poiseuille flow at criticality for exponentially long times, Phys. D, 185 (2003) 209-226.
-
(2003)
Phys. D
, vol.185
, pp. 209-226
-
-
Schneider, G.1
Uecker, H.2
-
26
-
-
0032263330
-
Hydrodynamics in Besov spaces
-
M. Vishik, Hydrodynamics in Besov spaces, Arch. Rat. Mech. Anal. 145 (1998), 197-214.
-
(1998)
Arch. Rat. Mech. Anal
, vol.145
, pp. 197-214
-
-
Vishik, M.1
-
28
-
-
0037256259
-
Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity
-
S. Zelik, Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math. 56 (2003), 584-637.
-
(2003)
Comm. Pure Appl. Math
, vol.56
, pp. 584-637
-
-
Zelik, S.1
-
29
-
-
0001537118
-
The attractor for a nonlinear reaction-diffusion system in an unbounded domain and Kolmogorov's epsilon-entropy
-
S. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain and Kolmogorov's epsilon-entropy, Math. Nachr. 232 (2001), 129-179.
-
(2001)
Math. Nachr
, vol.232
, pp. 129-179
-
-
Zelik, S.1
-
30
-
-
0035611978
-
The attractor for a nonlinear hyperbolic equation in an unbounded domain
-
S. Zelik, The attractor for a nonlinear hyperbolic equation in an unbounded domain, Discrete Contin. Dynam Systems 7 (2001), 593-641.
-
(2001)
Discrete Contin. Dynam Systems
, vol.7
, pp. 593-641
-
-
Zelik, S.1
-
31
-
-
36448960633
-
Spatial and temporal chaos in 2D Navier-Stokes equations in a strip
-
in preparation
-
S. Zelik, Spatial and temporal chaos in 2D Navier-Stokes equations in a strip, in preparation.
-
-
-
Zelik, S.1
-
32
-
-
36448983318
-
Weak spatially non-decaying solutions of 3D Navier-Stokes equations in cylindrical domains, Instability in Models Connected with Fluids Flow, International Math. Series
-
to appear
-
S. Zelik Weak spatially non-decaying solutions of 3D Navier-Stokes equations in cylindrical domains, Instability in Models Connected with Fluids Flow, International Math. Series, to appear.
-
-
-
Zelik, S.1
|