메뉴 건너뛰기




Volumn 18, Issue 6, 2007, Pages 1683-1696

Density-driven generalized regression neural networks (DD-GRNN) for function approximation

Author keywords

Density based; Function approximation; Generalized regression neural network (GRNN); Regularization

Indexed keywords

BAYESIAN NETWORKS; DATA PROCESSING; FEATURE EXTRACTION; REGRESSION ANALYSIS;

EID: 36349022748     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.902730     Document Type: Article
Times cited : (54)

References (56)
  • 5
    • 34548605972 scopus 로고    scopus 로고
    • Locally weighted interpolating growing neural gas
    • Nov
    • F. Flentge, "Locally weighted interpolating growing neural gas," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1382-1393, Nov. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.6 , pp. 1382-1393
    • Flentge, F.1
  • 6
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • Nov
    • N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and accurate online sequential learning algorithm for feedforward networks," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411-1423, Nov. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.-Y.1    Huang, G.-B.2    Saratchandran, P.3    Sundararajan, N.4
  • 7
    • 33746915070 scopus 로고    scopus 로고
    • On global-local artificial neural networks for function approximation
    • Jul
    • D. Wedge, D. Ingram, D. McLean, C. Mingham, and Z. Bandar, "On global-local artificial neural networks for function approximation," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 942-952, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 942-952
    • Wedge, D.1    Ingram, D.2    McLean, D.3    Mingham, C.4    Bandar, Z.5
  • 8
    • 33646496538 scopus 로고    scopus 로고
    • Function approximation using generalized adalines
    • May
    • J.-M. Wu, Z.-H. Lin, and P.-H. Hsu, "Function approximation using generalized adalines," IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 541-558, May 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.3 , pp. 541-558
    • Wu, J.-M.1    Lin, Z.-H.2    Hsu, P.-H.3
  • 9
    • 33846091979 scopus 로고    scopus 로고
    • Direction-dependent learning approach for radial basis function networks
    • Jan
    • P. Singla, K. Subbarao, and J. L. Junkins, "Direction-dependent learning approach for radial basis function networks," IEEE Trans. Neural Netw., vol. 18, no. 1, pp. 203-222, Jan. 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.1 , pp. 203-222
    • Singla, P.1    Subbarao, K.2    Junkins, J.L.3
  • 10
    • 0026254768 scopus 로고
    • A general regression neural network
    • Nov
    • D. F. Specht, "A general regression neural network," IEEE Trans. Neural Netw., vol. 2, no. 6, pp. 568-576, Nov. 1991.
    • (1991) IEEE Trans. Neural Netw , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 11
    • 0026953153 scopus 로고
    • Mapping neural network derived from the Parzen windowestimator
    • H. Schiøler and U. Hartmann, "Mapping neural network derived from the Parzen windowestimator," Neural Netw., vol. 5, pp. 903-909, 1993.
    • (1993) Neural Netw , vol.5 , pp. 903-909
    • Schiøler, H.1    Hartmann, U.2
  • 12
    • 24344463437 scopus 로고    scopus 로고
    • Image segmentation, feature selection and pattern classification for mammographic micro classifications
    • J. C. Fu, S. K. Lee, S. T. C.Wong, J. Y. Yeh, A. H.Wang, and H. K.Wu, "Image segmentation, feature selection and pattern classification for mammographic micro classifications," Comput. Med. Imaging Graph., vol. 29, pp. 419-429, 2005.
    • (2005) Comput. Med. Imaging Graph , vol.29 , pp. 419-429
    • Fu, J.C.1    Lee, S.K.2    Wong, S.T.C.3    Yeh, J.Y.4    Wang, A.H.5    Wu, H.K.6
  • 13
    • 27444433909 scopus 로고    scopus 로고
    • Regression techniques for the prediction of lower limb kinematics
    • J. Y. Goulermas, D. Howard, C. Nester, R. Jones, and L. Ren, "Regression techniques for the prediction of lower limb kinematics," J. Biomech. Eng., vol. 127, no. 6, pp. 1020-1024, 2005.
    • (2005) J. Biomech. Eng , vol.127 , Issue.6 , pp. 1020-1024
    • Goulermas, J.Y.1    Howard, D.2    Nester, C.3    Jones, R.4    Ren, L.5
  • 14
    • 7044270762 scopus 로고    scopus 로고
    • Prediction of etch microtrenching using a neural network
    • B. Kim, D. W. Lee, and K. H. Kwon, "Prediction of etch microtrenching using a neural network," J. Appl. Phys., vol. 96, no. 7, pp. 3612-3616, 2004.
    • (2004) J. Appl. Phys , vol.96 , Issue.7 , pp. 3612-3616
    • Kim, B.1    Lee, D.W.2    Kwon, K.H.3
  • 16
    • 2542511591 scopus 로고    scopus 로고
    • Generalized regression neural networks in timevarying environment
    • May
    • L. Rutkowski, "Generalized regression neural networks in timevarying environment," IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 576-596, May 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.3 , pp. 576-596
    • Rutkowski, L.1
  • 17
    • 0142239540 scopus 로고    scopus 로고
    • Adaptive general regression neural network for modeling of dynamic plants
    • T. L. Seng, M. Khalid, and R. Yusof, "Adaptive general regression neural network for modeling of dynamic plants," Proc. Inst. Mech. Eng. I, J. Syst. Control Eng., vol. 213, no. I4, pp. 275-287, 1999.
    • (1999) Proc. Inst. Mech. Eng. I, J. Syst. Control Eng , vol.213 , Issue.I4 , pp. 275-287
    • Seng, T.L.1    Khalid, M.2    Yusof, R.3
  • 18
    • 0742324907 scopus 로고    scopus 로고
    • Notions of intuition and attention modeled by a hierarchically arranged generalized regression neural network
    • Feb
    • T. Hoya, "Notions of intuition and attention modeled by a hierarchically arranged generalized regression neural network," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 200-209, Feb. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.34 , Issue.1 , pp. 200-209
    • Hoya, T.1
  • 19
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • D. F. Specht, "Probabilistic neural networks," Neural Netw., vol. 3, pp. 109-118, 1990.
    • (1990) Neural Netw , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 20
    • 0030145852 scopus 로고    scopus 로고
    • Weighted Parzen windows for pattern classification
    • May
    • G. A. Babich and O. I. Camps, "Weighted Parzen windows for pattern classification," IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 5, pp. 567-570, May 1996.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell , vol.18 , Issue.5 , pp. 567-570
    • Babich, G.A.1    Camps, O.I.2
  • 21
    • 0034226545 scopus 로고    scopus 로고
    • Temporal updating scheme for probabilistic neural network with application to satellite cloud classification
    • Jul
    • B. Tian, M. R. Azimi-Sadjaji, T. H. Vonder Haar, and D. Reinke, "Temporal updating scheme for probabilistic neural network with application to satellite cloud classification," IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 903-920, Jul. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.4 , pp. 903-920
    • Tian, B.1    Azimi-Sadjaji, M.R.2    Vonder Haar, T.H.3    Reinke, D.4
  • 22
    • 0034855365 scopus 로고    scopus 로고
    • A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust 'black box' tool for data analysis
    • D. Tomandl and A. Schober, "A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust 'black box' tool for data analysis," Neural Netw., vol. 14, pp. 1023-1034, 2001.
    • (2001) Neural Netw , vol.14 , pp. 1023-1034
    • Tomandl, D.1    Schober, A.2
  • 24
    • 0030283939 scopus 로고    scopus 로고
    • Learning experiments with genetic optimization of a generalized regression neural network
    • J. V. Hansen and R. D. Meservy, "Learning experiments with genetic optimization of a generalized regression neural network," Decision Support Syst., vol. 18, no. 3-4, pp. 317-325, 1996.
    • (1996) Decision Support Syst , vol.18 , Issue.3-4 , pp. 317-325
    • Hansen, J.V.1    Meservy, R.D.2
  • 25
    • 84898431324 scopus 로고
    • Variable kernel estimates of multivariate densities
    • May
    • L. Breiman, W. Meisel, and E. Purcell, "Variable kernel estimates of multivariate densities," Technometrics, vol. 19, no. 2, pp. 135-144, May 1977.
    • (1977) Technometrics , vol.19 , Issue.2 , pp. 135-144
    • Breiman, L.1    Meisel, W.2    Purcell, E.3
  • 26
    • 0001473437 scopus 로고
    • On the estimation of a probability density function and the mode
    • E. Parzen, "On the estimation of a probability density function and the mode," Ann. Math. Statist., vol. 33, no. 3, pp. 1065-1076, 1962.
    • (1962) Ann. Math. Statist , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 27
    • 0343171028 scopus 로고
    • Estimation of a multivariate density
    • T. Cacoullos, "Estimation of a multivariate density," Ann. Inst. Stat. Math., vol. 18, no. 2, pp. 179-189, 1966.
    • (1966) Ann. Inst. Stat. Math , vol.18 , Issue.2 , pp. 179-189
    • Cacoullos, T.1
  • 28
    • 0028341934 scopus 로고
    • On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size
    • L. Xu, A. Krzyzak, and A. Yuille, "On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size," Neural Netw., vol. 7, no. 4, pp. 609-628, 1994.
    • (1994) Neural Netw , vol.7 , Issue.4 , pp. 609-628
    • Xu, L.1    Krzyzak, A.2    Yuille, A.3
  • 29
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. E. Moody and C. J. Darken, "Fast learning in networks of locally-tuned processing units," Neural Comput., vol. 1, no. 2, pp. 281-294, 1989.
    • (1989) Neural Comput , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.E.1    Darken, C.J.2
  • 30
    • 0002475925 scopus 로고
    • Network structuring and training using rule-based knowledge
    • San Mateo, CA: Morgan Kaufman
    • V. Tresp, J. Hollatz, and S. Ahmad, "Network structuring and training using rule-based knowledge," in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufman, 1993, vol. 5, pp. 871-878.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 871-878
    • Tresp, V.1    Hollatz, J.2    Ahmad, S.3
  • 31
    • 0000612809 scopus 로고
    • Fuzzy basis functions: Comparisons with other basis functions
    • May
    • H. M. Kim and J. M. Mendel, "Fuzzy basis functions: Comparisons with other basis functions," IEEE Trans. Fuzzy Syst., vol. 3, no. 2, pp. 158-168, May 1995.
    • (1995) IEEE Trans. Fuzzy Syst , vol.3 , Issue.2 , pp. 158-168
    • Kim, H.M.1    Mendel, J.M.2
  • 32
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.
    • (2001) J. Mach. Learn. Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 33
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modeling using orthogonal forward regression with PRESS statistic and regularization
    • Apr
    • S. Chen, X. Hong, C. J. Harris, and P. M. Sharkey, "Sparse modeling using orthogonal forward regression with PRESS statistic and regularization," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 2, pp. 898-911, Apr. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.34 , Issue.2 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 37
    • 0037361405 scopus 로고    scopus 로고
    • A robust nonlinear identification algorithm using PRESS statistic and forward regression
    • Mar
    • X. Hong, P. M. Sharkey, and K.Warwick, "A robust nonlinear identification algorithm using PRESS statistic and forward regression," IEEE Trans. Neural Netw., vol. 14, no. 2, pp. 454-458, Mar. 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.2 , pp. 454-458
    • Hong, X.1    Sharkey, P.M.2    Warwick, K.3
  • 39
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian Learning For Neural Networks
    • New York: Springer-Verlag
    • R. M. Neal, "Bayesian Learning For Neural Networks," in Lecture Notes in Statistics 118. New York: Springer-Verlag, 1996,.
    • (1996) Lecture Notes in Statistics , vol.118
    • Neal, R.M.1
  • 40
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. C. MacKay, "Bayesian interpolation," Neural Comput., vol. 4, no. 3, pp. 415-447, 1992.
    • (1992) Neural Comput , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 41
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation network
    • D. J. C. MacKay, "A practical Bayesian framework for backpropagation network," Neural Comput., vol. 4, no. 3, pp. 448-472, 1992.
    • (1992) Neural Comput , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 42
    • 0029754435 scopus 로고    scopus 로고
    • A review of Bayesian neural networks with an application to near infrared spectroscopy
    • Jan
    • H. H. Thodberg, "A review of Bayesian neural networks with an application to near infrared spectroscopy," IEEE Trans. Neural Netw. vol. 7, no. 1, pp. 56-72, Jan. 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , Issue.1 , pp. 56-72
    • Thodberg, H.H.1
  • 43
    • 0030702721 scopus 로고    scopus 로고
    • Gauss-Newton approximation to Bayesian learning
    • F. D. Foresee and M. T. Hagan, "Gauss-Newton approximation to Bayesian learning," in Proc. IEEE Int. Conf. Neural Netw., 1997, vol. 3, pp. 1930-1935.
    • (1997) Proc. IEEE Int. Conf. Neural Netw , vol.3 , pp. 1930-1935
    • Foresee, F.D.1    Hagan, M.T.2
  • 44
    • 0031194555 scopus 로고    scopus 로고
    • An incremental adaptive network for on-line supervized learning and probability estimation
    • C. P. Lim and R. F. Harrison, "An incremental adaptive network for on-line supervized learning and probability estimation," Neural Netw., vol. 10, no. 5, pp. 925-939, 1997.
    • (1997) Neural Netw , vol.10 , Issue.5 , pp. 925-939
    • Lim, C.P.1    Harrison, R.F.2
  • 46
    • 0034252177 scopus 로고    scopus 로고
    • Tuning diversity in bagged ensembles
    • J. Carney and P. Cunningham, "Tuning diversity in bagged ensembles," Int. J. Neural Syst., vol. 10, no. 4, pp. 267-279, 2000.
    • (2000) Int. J. Neural Syst , vol.10 , Issue.4 , pp. 267-279
    • Carney, J.1    Cunningham, P.2
  • 47
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Nov
    • M. Hagan and M. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993, Nov. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2
  • 48
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May
    • J.-S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May. 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 50
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm
    • Mar
    • L. Yingwei, N. Sundararajan, and P. Saratchandran, "Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm," IEEE Trans. Neural Netw., vol. 9, no. 2, pp. 308-318, Mar. 1998.
    • (1998) IEEE Trans. Neural Netw , vol.9 , Issue.2 , pp. 308-318
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 51
    • 17144364272 scopus 로고    scopus 로고
    • A constrained nonlinear energy minimization framework for the regularization of the stereo correspondence problem
    • Apr
    • J. Y. Goulermas, P. Liatsis, and T. Fernando, "A constrained nonlinear energy minimization framework for the regularization of the stereo correspondence problem," IEEE Trans. Circuits Syst. Video Technol. vol. 15, no. 4, pp. 550-565, Apr. 2005.
    • (2005) IEEE Trans. Circuits Syst. Video Technol , vol.15 , Issue.4 , pp. 550-565
    • Goulermas, J.Y.1    Liatsis, P.2    Fernando, T.3
  • 52
    • 0041939772 scopus 로고    scopus 로고
    • High-accuracy stereo depth maps using structured light
    • Madison, WI, Jun
    • D. Scharstein and R. Szeliski, "High-accuracy stereo depth maps using structured light," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Madison, WI, Jun. 2003, vol. 1, pp. 195-202.
    • (2003) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , vol.1 , pp. 195-202
    • Scharstein, D.1    Szeliski, R.2
  • 53
    • 0030135939 scopus 로고    scopus 로고
    • Side effects of normalizing radial basis function networks
    • R. Shorten and R. Murray-Smith, "Side effects of normalizing radial basis function networks," Int. J. Neural Syst., vol. 7, no. 2, pp. 167-179, 1996.
    • (1996) Int. J. Neural Syst , vol.7 , Issue.2 , pp. 167-179
    • Shorten, R.1    Murray-Smith, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.