메뉴 건너뛰기




Volumn 23, Issue 4-6, 2007, Pages 454-467

Regularized collocation method for Fredholm integral equations of the first kind

Author keywords

A posteriori parameter choice; Collocation method; General source conditions; Ill posed problems; Operator monotone functions; Order optimal error bounds; Regularization

Indexed keywords

MATHEMATICAL MODELS; MATRIX ALGEBRA; PARAMETER ESTIMATION; PROBLEM SOLVING; RELIABILITY THEORY;

EID: 36249001104     PISSN: 0885064X     EISSN: 10902708     Source Type: Journal    
DOI: 10.1016/j.jco.2006.09.002     Document Type: Article
Times cited : (49)

References (21)
  • 1
    • 28544447018 scopus 로고    scopus 로고
    • Regularization without preliminary knowledge of smoothness and error behaviour
    • Bauer F., and Pereverzev S. Regularization without preliminary knowledge of smoothness and error behaviour. European J. Appl. Math. 16 3 (2005) 303-317
    • (2005) European J. Appl. Math. , vol.16 , Issue.3 , pp. 303-317
    • Bauer, F.1    Pereverzev, S.2
  • 2
    • 33845902620 scopus 로고    scopus 로고
    • Convergence rates for Tikhonov regularization from different kind of smoothness conditions
    • Böttcher A., Hofmann B., Tautenhahn U., and Yamanoto M. Convergence rates for Tikhonov regularization from different kind of smoothness conditions. Appl. Analysis 85 (2006)
    • (2006) Appl. Analysis , vol.85
    • Böttcher, A.1    Hofmann, B.2    Tautenhahn, U.3    Yamanoto, M.4
  • 3
    • 36249025238 scopus 로고    scopus 로고
    • G. Bruckner, J. Elschner, M. Yamamoto, An optimization method for grating profile reconstruction, Progress in analysis, vol. I, II (Berlin, 2001), World Sci. Publishing, River Edge, NJ, 2003, pp. 1391-1404.
  • 4
    • 85025244653 scopus 로고    scopus 로고
    • Error bounds of discretization methods for boundary integral equations with noisy data
    • Bruckner G., Prössdorf S., and Vainikko G. Error bounds of discretization methods for boundary integral equations with noisy data. Appl. Anal. 63 1-2 (1996) 25-37
    • (1996) Appl. Anal. , vol.63 , Issue.1-2 , pp. 25-37
    • Bruckner, G.1    Prössdorf, S.2    Vainikko, G.3
  • 5
    • 33846929781 scopus 로고    scopus 로고
    • F.R. de Hoog, R.S. Anderssen, Regualrization of first kind integral equations with application to Couette viscometry, J. Intergral Equations Appl. (2006).
  • 7
    • 0038489757 scopus 로고
    • Convergence analysis of a regularized degenerate kernel method for Fredholm integral equations of the first kind
    • Groetsch C.W. Convergence analysis of a regularized degenerate kernel method for Fredholm integral equations of the first kind. Integral Equations Operator Theory 13 1 (1990) 67-75
    • (1990) Integral Equations Operator Theory , vol.13 , Issue.1 , pp. 67-75
    • Groetsch, C.W.1
  • 8
    • 36248977022 scopus 로고    scopus 로고
    • F. Hansen, Operator inequalities associated with Jensen's inequality, Survey on classical inequalities, Mathematical Applications, vol. 517, Kluwer Acad. Publ., Dordrecht, 2000, pp. 67-98.
  • 9
    • 0034187252 scopus 로고    scopus 로고
    • Regularization of exponentially ill-posed problems
    • Hohage T. Regularization of exponentially ill-posed problems. Numer. Funct. Anal. Optimiz. 21 (2000) 439-464
    • (2000) Numer. Funct. Anal. Optimiz. , vol.21 , pp. 439-464
    • Hohage, T.1
  • 10
    • 0001595602 scopus 로고    scopus 로고
    • Comparisons of parameter choice methods for regularization with discrete noisy data
    • Lukas M.A. Comparisons of parameter choice methods for regularization with discrete noisy data. Inverse Problems 14 1 (1998) 161-184
    • (1998) Inverse Problems , vol.14 , Issue.1 , pp. 161-184
    • Lukas, M.A.1
  • 11
    • 0036697653 scopus 로고    scopus 로고
    • Moduli of continuity for operator valued functions
    • Mathé P., and Pereverzev S.V. Moduli of continuity for operator valued functions. Numer. Funct. Anal. Optim. 23 5-6 (2002) 623-631
    • (2002) Numer. Funct. Anal. Optim. , vol.23 , Issue.5-6 , pp. 623-631
    • Mathé, P.1    Pereverzev, S.V.2
  • 12
    • 0038339461 scopus 로고    scopus 로고
    • Geometry of linear ill-posed problems in variable Hilbert scales
    • Mathé P., and Pereverzev S.V. Geometry of linear ill-posed problems in variable Hilbert scales. Inverse Problems 19 3 (2003) 789-803
    • (2003) Inverse Problems , vol.19 , Issue.3 , pp. 789-803
    • Mathé, P.1    Pereverzev, S.V.2
  • 13
    • 0346946904 scopus 로고    scopus 로고
    • Discretization strategy for linear ill-posed problems in variable Hilbert scales
    • Mathé P., and Pereverzev S.V. Discretization strategy for linear ill-posed problems in variable Hilbert scales. Inverse Problems 19 6 (2003) 1263-1277
    • (2003) Inverse Problems , vol.19 , Issue.6 , pp. 1263-1277
    • Mathé, P.1    Pereverzev, S.V.2
  • 14
    • 33744515791 scopus 로고    scopus 로고
    • Regularization of some linear inverse problems with discretized random noisy data
    • Mathé P., and Pereverzev S.V. Regularization of some linear inverse problems with discretized random noisy data. Math. Comput. 75 (2006) 1913-1929
    • (2006) Math. Comput. , vol.75 , pp. 1913-1929
    • Mathé, P.1    Pereverzev, S.V.2
  • 15
    • 0037227075 scopus 로고    scopus 로고
    • Morozov's discrepancy principle under general source conditions
    • Nair M.T., Schock E., and Tautenhahn U. Morozov's discrepancy principle under general source conditions. J. Anal. Appl. 22 (2003) 199-214
    • (2003) J. Anal. Appl. , vol.22 , pp. 199-214
    • Nair, M.T.1    Schock, E.2    Tautenhahn, U.3
  • 16
    • 0000823716 scopus 로고
    • Convergence rates for regularized solutions of integral equations from discrete noisy data
    • Nychka D.W., and Cox D.D. Convergence rates for regularized solutions of integral equations from discrete noisy data. Ann. Statist. 17 2 (1989) 556-572
    • (1989) Ann. Statist. , vol.17 , Issue.2 , pp. 556-572
    • Nychka, D.W.1    Cox, D.D.2
  • 17
    • 0013235011 scopus 로고    scopus 로고
    • On the characterization of self-regularization properties of a fully discrete projection method for Symm's integral equation
    • Pereverzev S.V., and Prössdorf S. On the characterization of self-regularization properties of a fully discrete projection method for Symm's integral equation. J. Integral Equations Appl. 12 2 (2000) 113-130
    • (2000) J. Integral Equations Appl. , vol.12 , Issue.2 , pp. 113-130
    • Pereverzev, S.V.1    Prössdorf, S.2
  • 18
    • 0034315150 scopus 로고    scopus 로고
    • Morozov's discrepancy principle for Tikhonov regularization of severely ill-posed problems in finite-dimensional subspaces, Numer
    • Pereverzev S.V., and Schock E. Morozov's discrepancy principle for Tikhonov regularization of severely ill-posed problems in finite-dimensional subspaces, Numer. Funct. Anal. Optim. 21 7-8 (2000) 901-916
    • (2000) Funct. Anal. Optim. , vol.21 , Issue.7-8 , pp. 901-916
    • Pereverzev, S.V.1    Schock, E.2
  • 19
    • 33750173498 scopus 로고    scopus 로고
    • On the adaptive selection of the parameter in regualrization of ill-posed problems
    • Pereverzev S.V., and Schock E. On the adaptive selection of the parameter in regualrization of ill-posed problems. SIAM J. Numer. Anal. 43 (2005) 2060-2076
    • (2005) SIAM J. Numer. Anal. , vol.43 , pp. 2060-2076
    • Pereverzev, S.V.1    Schock, E.2
  • 20
    • 0037845247 scopus 로고    scopus 로고
    • Convergence analysis of a regularized approximation for solving Fredholm integral equations of the first kind
    • Rajan M.P. Convergence analysis of a regularized approximation for solving Fredholm integral equations of the first kind. J. Math. Anal. Appl. 279 2 (2003) 522-530
    • (2003) J. Math. Anal. Appl. , vol.279 , Issue.2 , pp. 522-530
    • Rajan, M.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.