메뉴 건너뛰기




Volumn 17, Issue 3, 2007, Pages 895-907

Pool size selection for the sampling/importance resampling algorithm

Author keywords

Importance weight; Monte Carlo sampling; Resampling method; Sample size; Tight resampling algorithm

Indexed keywords


EID: 36248985198     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (22)
  • 1
    • 21144468971 scopus 로고
    • Teaching Bayesian statistics using sampling methods and MINITAB
    • Albert, J. H. (1993). Teaching Bayesian statistics using sampling methods and MINITAB. Amer. Statist. 47, 182-191.
    • (1993) Amer. Statist , vol.47 , pp. 182-191
    • Albert, J.H.1
  • 2
    • 0031321240 scopus 로고    scopus 로고
    • Dynamic conditional independence models and Markov chain Monte Carlo methods
    • Berzuini, C., Best, N. G., Gilks, W. R. and Larizza, C. (1997). Dynamic conditional independence models and Markov chain Monte Carlo methods. J. Amer. Statist. Assoc. 92, 1403-1412.
    • (1997) J. Amer. Statist. Assoc , vol.92 , pp. 1403-1412
    • Berzuini, C.1    Best, N.G.2    Gilks, W.R.3    Larizza, C.4
  • 3
    • 0141456250 scopus 로고    scopus 로고
    • Option pricing under model and parameter uncertainty using predictive densities
    • Bunnin, F. O., Guo, Y. and Ren, Y. (2002). Option pricing under model and parameter uncertainty using predictive densities. Statist. Comput. 12, 37-44.
    • (2002) Statist. Comput , vol.12 , pp. 37-44
    • Bunnin, F.O.1    Guo, Y.2    Ren, Y.3
  • 4
    • 0000565148 scopus 로고    scopus 로고
    • Inference for the poly-Weibull model
    • Davison, A. C. and Louzada-Neto, F. (2000). Inference for the poly-Weibull model. The Statistician 49, 189-196.
    • (2000) The Statistician , vol.49 , pp. 189-196
    • Davison, A.C.1    Louzada-Neto, F.2
  • 5
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85, 398-409.
    • (1990) J. Amer. Statist. Assoc , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 6
    • 0003860037 scopus 로고    scopus 로고
    • Gilks, W. R, Richardson, S. and Spiegelhalter, D. J, eds, Chapman & Hall, London
    • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (eds.) (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, London.
    • (1996) Markov Chain Monte Carlo in Practice
  • 7
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings-F. 140, 107-113.
    • (1993) IEE Proceedings-F , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 8
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist. 5, 1-25.
    • (1996) J. Comput. Graph. Statist , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 9
    • 34250338715 scopus 로고    scopus 로고
    • Testing for optimality in job search models
    • Koop, G. and Poirier, D. J. (2001). Testing for optimality in job search models. Econometrics J. 4, 257-272.
    • (2001) Econometrics J , vol.4 , pp. 257-272
    • Koop, G.1    Poirier, D.J.2
  • 10
    • 0031479221 scopus 로고    scopus 로고
    • Exact structural inference in optimal job-search models
    • Lancaster, T. (1997). Exact structural inference in optimal job-search models. J. Bus. Econom. Statist. 15, 165-179.
    • (1997) J. Bus. Econom. Statist , vol.15 , pp. 165-179
    • Lancaster, T.1
  • 11
  • 14
    • 0030619241 scopus 로고    scopus 로고
    • Bayesian stock assessment using catch-age data and the sampling-importance resampling algorithm
    • McAllister, M. K. and Ianelli, J. N. (1997). Bayesian stock assessment using catch-age data and the sampling-importance resampling algorithm. Canad. J. Fisheries and Aquatic Sci. 54, 284-300.
    • (1997) Canad. J. Fisheries and Aquatic Sci , vol.54 , pp. 284-300
    • McAllister, M.K.1    Ianelli, J.N.2
  • 15
    • 0028166512 scopus 로고
    • A Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm
    • McAllister, M. K., Pikitch, E. K., Punt, A. E. and Hilborn, R. (1994). A Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm. Canad. J. Fisheries and Aquatic Sci. 51, 2673-2687.
    • (1994) Canad. J. Fisheries and Aquatic Sci , vol.51 , pp. 2673-2687
    • McAllister, M.K.1    Pikitch, E.K.2    Punt, A.E.3    Hilborn, R.4
  • 16
    • 0003078723 scopus 로고
    • Approximate Bayesian inference with the weighted likelihood bootstrap (with discussion)
    • Newton, M. A. and Raftery, A. E. (1994). Approximate Bayesian inference with the weighted likelihood bootstrap (with discussion). J. Roy. Statist. Soe. Ser. B 56, 3-48.
    • (1994) J. Roy. Statist. Soe. Ser. B , vol.56 , pp. 3-48
    • Newton, M.A.1    Raftery, A.E.2
  • 17
    • 84950955471 scopus 로고
    • Inference from a deterministic population dynamics model for bowhead whales
    • Raftery, A. E., Givens, G. H. and Zeh, J. E. (1995). Inference from a deterministic population dynamics model for bowhead whales. J. Amer. Statist. Assoc. 90, 402-416.
    • (1995) J. Amer. Statist. Assoc , vol.90 , pp. 402-416
    • Raftery, A.E.1    Givens, G.H.2    Zeh, J.E.3
  • 18
    • 84950788916 scopus 로고
    • A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm. Discussion of Tanner and Wong (1987)
    • Rubin, D. B. (1987). A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: the SIR algorithm. Discussion of Tanner and Wong (1987). J. Amer. Statist. Assoc. 82, 543-546.
    • (1987) J. Amer. Statist. Assoc , vol.82 , pp. 543-546
    • Rubin, D.B.1
  • 19
    • 0000458272 scopus 로고
    • Using the SIR algorithm to simulate posterior distributions
    • Edited by J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, Oxford University Press, Oxford
    • Rubin, D. B. (1988). Using the SIR algorithm to simulate posterior distributions. In Bayesian Statistics 3 (Edited by J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith), 395-402. Oxford University Press, Oxford.
    • (1988) Bayesian Statistics , vol.3 , pp. 395-402
    • Rubin, D.B.1
  • 20
    • 0242458500 scopus 로고    scopus 로고
    • Improved sampling-importance resampling and reduced bias importance sampling
    • Skare, Ø., Bølviken, E. and Holden, L. (2003). Improved sampling-importance resampling and reduced bias importance sampling. Scand. J. Statist. 30, 719-737.
    • (2003) Scand. J. Statist , vol.30 , pp. 719-737
    • Skare, O.1    Bølviken, E.2    Holden, L.3
  • 21
    • 0003174553 scopus 로고
    • Bayesian statistics without tears: A sampling-resampling perspective
    • Smith, A. F. M. and Gelfand, A. E. (1992). Bayesian statistics without tears: a sampling-resampling perspective. Amer. Statist. 46, 84-88.
    • (1992) Amer. Statist , vol.46 , pp. 84-88
    • Smith, A.F.M.1    Gelfand, A.E.2
  • 22
    • 0012546232 scopus 로고    scopus 로고
    • A noniterative sampling method for computing posteriors in the structure of EM-type algorithms
    • Tan, M., Tian, G.-L. and Ng, K. W. (2003). A noniterative sampling method for computing posteriors in the structure of EM-type algorithms. Statist. Sinica 13, 625-639.
    • (2003) Statist. Sinica , vol.13 , pp. 625-639
    • Tan, M.1    Tian, G.-L.2    Ng, K.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.