-
2
-
-
0016846111
-
Wave-propagation and natural modes in periodic systems. 1. Mono-coupled systems
-
Mead D.J. Wave-propagation and natural modes in periodic systems. 1. Mono-coupled systems. J. Sound Vib. 40 (1975) 1-18
-
(1975)
J. Sound Vib.
, vol.40
, pp. 1-18
-
-
Mead, D.J.1
-
3
-
-
0016846112
-
Wave-propagation and natural modes in periodic systems. 2. Multi-coupled systems, with and without damping
-
Mead D.J. Wave-propagation and natural modes in periodic systems. 2. Multi-coupled systems, with and without damping. J. Sound Vib. 40 (1975) 19-39
-
(1975)
J. Sound Vib.
, vol.40
, pp. 19-39
-
-
Mead, D.J.1
-
5
-
-
0035285191
-
Dynamics of a weakly non-linear periodic chain
-
Chakraborty G., and Mallik A.K. Dynamics of a weakly non-linear periodic chain. Int. J. Non-linear Mech. 36 (2001) 375-389
-
(2001)
Int. J. Non-linear Mech.
, vol.36
, pp. 375-389
-
-
Chakraborty, G.1
Mallik, A.K.2
-
6
-
-
33644556136
-
Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales
-
Marathe A., and Chatterjee A. Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales. J. Sound Vib. 289 (2006) 871-888
-
(2006)
J. Sound Vib.
, vol.289
, pp. 871-888
-
-
Marathe, A.1
Chatterjee, A.2
-
7
-
-
33344461456
-
Propagation of mechanical waves in a one-dimensional nonlinear disordered lattice
-
Richoux O., Depollier C., and Hardy J. Propagation of mechanical waves in a one-dimensional nonlinear disordered lattice. Phys. Lett. E 73 (2006) 026611
-
(2006)
Phys. Lett. E
, vol.73
, pp. 026611
-
-
Richoux, O.1
Depollier, C.2
Hardy, J.3
-
8
-
-
0004106820
-
-
McGraw-Hill, New York (Reprinted by Dover Publications Inc., New York, 1985)
-
Den Hartog J.P. Mechanical Vibrations. 4th ed. (1956), McGraw-Hill, New York (Reprinted by Dover Publications Inc., New York, 1985)
-
(1956)
Mechanical Vibrations. 4th ed.
-
-
Den Hartog, J.P.1
-
9
-
-
29144437757
-
Low frequency torsional vibration gaps in the shaft with locally resonant structures
-
Yu D.L., Liu Y.Z., Wang G., Cai L., and Qiu J. Low frequency torsional vibration gaps in the shaft with locally resonant structures. Phys. Lett. A 348 (2006) 410-415
-
(2006)
Phys. Lett. A
, vol.348
, pp. 410-415
-
-
Yu, D.L.1
Liu, Y.Z.2
Wang, G.3
Cai, L.4
Qiu, J.5
-
10
-
-
0034622972
-
Locally resonant sonic materials
-
Liu Z., Zhang X., Mao Y., Zhu Y.Y., Yang Z., Chan C.T., and Sheng P. Locally resonant sonic materials. Science 289 (2000) 1734-1736
-
(2000)
Science
, vol.289
, pp. 1734-1736
-
-
Liu, Z.1
Zhang, X.2
Mao, Y.3
Zhu, Y.Y.4
Yang, Z.5
Chan, C.T.6
Sheng, P.7
-
11
-
-
20344388060
-
Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method: application to locally resonant beams with flexural wave band gap
-
Wang G., Wen J., and Wen X. Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method: application to locally resonant beams with flexural wave band gap. Phys. Lett. B 71 (2005) 104302
-
(2005)
Phys. Lett. B
, vol.71
, pp. 104302
-
-
Wang, G.1
Wen, J.2
Wen, X.3
-
12
-
-
0030287434
-
An invariant manifold approach for studying waves in a one-dimensional array of non-linear oscillators
-
Georgiou I.T., and Vakakis A.F. An invariant manifold approach for studying waves in a one-dimensional array of non-linear oscillators. Int. J. Non-Linear Mech. 31 (1996) 871-886
-
(1996)
Int. J. Non-Linear Mech.
, vol.31
, pp. 871-886
-
-
Georgiou, I.T.1
Vakakis, A.F.2
-
16
-
-
0141518189
-
Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures
-
Jensen J.S. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J. Sound Vib. 266 (2003) 1053-1078
-
(2003)
J. Sound Vib.
, vol.266
, pp. 1053-1078
-
-
Jensen, J.S.1
|