-
1
-
-
0031141136
-
Complementarity and nondegeneracy in semidefinite programming
-
Alizadeh, F., Haeberly, J.P., Overton, M.L.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77, 111-128 (1997)
-
(1997)
Math. Program.
, vol.77
, pp. 111-128
-
-
Alizadeh, F.1
Haeberly, J.P.2
Overton, M.L.3
-
2
-
-
23844551533
-
Quadratic convergence of a nonsmooth Newton-type method for semidefinite programs without strict complementarity
-
Kanzow, C., Nagel, C.: Quadratic convergence of a nonsmooth Newton-type method for semidefinite programs without strict complementarity. SIAM J. Optim. 15, 654-672 (2005)
-
(2005)
SIAM J. Optim.
, vol.15
, pp. 654-672
-
-
Kanzow, C.1
Nagel, C.2
-
3
-
-
0030303838
-
An interior-point method for semidefinite programming
-
Helmberg, C., Rendl, F., Vanderbei, R., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6, 342-361 (1996)
-
(1996)
SIAM J. Optim.
, vol.6
, pp. 342-361
-
-
Helmberg, C.1
Rendl, F.2
Vanderbei, R.3
Wolkowicz, H.4
-
4
-
-
0000376618
-
Local convergence of predictor-corrector infeasible-interior-point algorithms for SDPs and SDLCPs
-
Kojima, M., Shida, M., Shindoh, S.: Local convergence of predictor-corrector infeasible-interior-point algorithms for SDPs and SDLCPs. Math. Program. 80, 129-160 (1998)
-
(1998)
Math. Program.
, vol.80
, pp. 129-160
-
-
Kojima, M.1
Shida, M.2
Shindoh, S.3
-
5
-
-
0033439651
-
A predictor-corrector interior-point algorithm for the semidefinite linear complementarity problem using the Alizadeh-Haeberly-Overton search direction
-
Kojima, M., Shida, M., Shindoh, S.: A predictor-corrector interior-point algorithm for the semidefinite linear complementarity problem using the Alizadeh-Haeberly-Overton search direction. SIAM J. Optim. 9, 444-465 (1999)
-
(1999)
SIAM J. Optim.
, vol.9
, pp. 444-465
-
-
Kojima, M.1
Shida, M.2
Shindoh, S.3
-
6
-
-
0032333697
-
Polynomial convergence of primal-dual algorithms for semidefinite programming based on the Monteiro and Zhang family of directions
-
Monteiro, R.D.C.: Polynomial convergence of primal-dual algorithms for semidefinite programming based on the Monteiro and Zhang family of directions. SIAM J. Optim. 8, 797-812 (1998)
-
(1998)
SIAM J. Optim.
, vol.8
, pp. 797-812
-
-
Monteiro, R.D.C.1
-
7
-
-
0032222088
-
Primal-dual interior-point methods for self-scaled cones
-
Nesterov, Y., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8, 324-364 (1998)
-
(1998)
SIAM J. Optim.
, vol.8
, pp. 324-364
-
-
Nesterov, Y.1
Todd, M.J.2
-
8
-
-
0032359979
-
On the Nesterov-Todd direction in semidefinite programming
-
Todd, M.J., Toh, K.C., Tütüncü, R.H.: On the Nesterov-Todd direction in semidefinite programming. SIAM J. Optim. 8, 769-796 (1998)
-
(1998)
SIAM J. Optim.
, vol.8
, pp. 769-796
-
-
Todd, M.J.1
Toh, K.C.2
Tütüncü, R.H.3
-
9
-
-
0032081158
-
On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming
-
Zhang, Y.: On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optim. 8, 365-386 (1998)
-
(1998)
SIAM J. Optim.
, vol.8
, pp. 365-386
-
-
Zhang, Y.1
-
10
-
-
0346405888
-
Non-interior continuation methods for solving semidefinite complementarity problems
-
Chen, X., Tseng, P.: Non-interior continuation methods for solving semidefinite complementarity problems. Math. Program. 95, 431-474 (2003)
-
(2003)
Math. Program.
, vol.95
, pp. 431-474
-
-
Chen, X.1
Tseng, P.2
-
11
-
-
0037289395
-
Semidefinite programs: New search directions, smoothing-type methods, and numerical results
-
Corrigendum in SIAM J. Optim. 14, 936-937 (2004)
-
Kanzow, C., Nagel, C.: Semidefinite programs: new search directions, smoothing-type methods, and numerical results. SIAM J. Optim. 13, 1-23 (2003). Corrigendum in SIAM J. Optim. 14, 936-937 (2004)
-
(2003)
SIAM J. Optim.
, vol.13
, pp. 1-23
-
-
Kanzow, C.1
Nagel, C.2
-
12
-
-
9744250909
-
Some structural properties of a Newton-type method for semidefinite programs
-
Kanzow, C., Nagel, C.: Some structural properties of a Newton-type method for semidefinite programs. J. Optim. Theory Appl. 122, 219-226 (2004)
-
(2004)
J. Optim. Theory Appl.
, vol.122
, pp. 219-226
-
-
Kanzow, C.1
Nagel, C.2
-
13
-
-
0036474487
-
Semismooth matrix valued functions
-
Sun, D., Sun, J.: Semismooth matrix valued functions. Math. Oper. Res. 27, 150-169 (2002)
-
(2002)
Math. Oper. Res.
, vol.27
, pp. 150-169
-
-
Sun, D.1
Sun, J.2
-
14
-
-
4043052308
-
A squared smoothing Newton method for nonsmooth matrix equations and its applications in semidefinite optimization problems
-
Sun, J., Sun, D., Qi, L.: A squared smoothing Newton method for nonsmooth matrix equations and its applications in semidefinite optimization problems. SIAM J. Optim. 14, 783-806 (2004)
-
(2004)
SIAM J. Optim.
, vol.14
, pp. 783-806
-
-
Sun, J.1
Sun, D.2
Qi, L.3
-
15
-
-
0000882736
-
Merit functions for semi-definite complementarity problems
-
Tseng, P.: Merit functions for semi-definite complementarity problems. Math. Program. 83, 159-185 (1998)
-
(1998)
Math. Program.
, vol.83
, pp. 159-185
-
-
Tseng, P.1
-
16
-
-
0032327612
-
Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results
-
Alizadeh, F., Haeberly, J.P., Overton, M.L.: Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8, 746-768 (1998)
-
(1998)
SIAM J. Optim.
, vol.8
, pp. 746-768
-
-
Alizadeh, F.1
Haeberly, J.P.2
Overton, M.L.3
-
18
-
-
0242523952
-
A sensitivity result for semidefinite programs
-
Freund, R.W., Jarre, F.: A sensitivity result for semidefinite programs. Oper. Res. Lett. 32, 126-132 (2004)
-
(2004)
Oper. Res. Lett.
, vol.32
, pp. 126-132
-
-
Freund, R.W.1
Jarre, F.2
-
19
-
-
36148937485
-
-
Technical Report CCEC-97-0519, Center for Control Engineering and Computation, University of California, Santa Barbara
-
Miller, S.A.: Sensitivity of solutions to semidefinite programs. Technical Report CCEC-97-0519, Center for Control Engineering and Computation, University of California, Santa Barbara (1997)
-
(1997)
Sensitivity of Solutions to Semidefinite Programs
-
-
Miller, S.A.1
-
21
-
-
0000496360
-
On eigenvalue optimization
-
Shapiro, A., Fan, M.K.H.: On eigenvalue optimization. SIAM J. Optim. 5, 552-569 (1995)
-
(1995)
SIAM J. Optim.
, vol.5
, pp. 552-569
-
-
Shapiro, A.1
Fan, M.K.H.2
-
22
-
-
0031139858
-
First and second order analysis of nonlinear semidefinite programs
-
Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77, 301-320 (1997)
-
(1997)
Math. Program.
, vol.77
, pp. 301-320
-
-
Shapiro, A.1
-
23
-
-
21344441658
-
Cone-LP's and semidefinite programs: Geometry and a simplex-type method
-
Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.). Springer Berlin
-
Pataki, G.: Cone-LP's and semidefinite programs: geometry and a simplex-type method. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) Proceedings of the Fifth IPCO Conference, pp. 161-174. Springer, Berlin (1996)
-
(1996)
Proceedings of the Fifth IPCO Conference
, pp. 161-174
-
-
Pataki, G.1
-
24
-
-
0242711183
-
The geometry of semidefinite programming
-
Kluwer Dordrecht
-
Pataki, G.: The geometry of semidefinite programming. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, pp. 29-66. Kluwer, Dordrecht (2000)
-
(2000)
Handbook of Semidefinite Programming: Theory, Algorithms, and Applications
, pp. 29-66
-
-
Pataki, G.1
Wolkowicz, H.2
Saigal, R.3
Vandenberghe, L.4
-
25
-
-
3142661056
-
An interior-point perspective on sensitivity analysis in semidefinite programming
-
Yildirim, E.A.: An interior-point perspective on sensitivity analysis in semidefinite programming. Math. Oper. Res. 28, 649-676 (2003)
-
(2003)
Math. Oper. Res.
, vol.28
, pp. 649-676
-
-
Yildirim, E.A.1
-
28
-
-
36148999777
-
-
Report, Institute of Applied Mathematics and Statistics, University of Würzburg, Würzburg, Germany
-
Flegel, M.L., Kanzow, C.: Equivalence of two nondegeneracy conditions for semidefinite programs. Report, Institute of Applied Mathematics and Statistics, University of Würzburg, Würzburg, Germany (2005)
-
(2005)
Equivalence of Two Nondegeneracy Conditions for Semidefinite Programs
-
-
Flegel, M.L.1
Kanzow, C.2
|