메뉴 건너뛰기




Volumn 18, Issue 12, 2007, Pages 3673-3681

A multi-step predictor for dynamic system property forecasting

Author keywords

Adaptive training; Dynamic systems; Machinery condition monitoring; Multi step prediction; Neuro fuzzy system

Indexed keywords

DATA STRUCTURES; FORECASTING; FUZZY LOGIC; MEASUREMENT THEORY;

EID: 36148937939     PISSN: 09570233     EISSN: 13616501     Source Type: Journal    
DOI: 10.1088/0957-0233/18/12/001     Document Type: Article
Times cited : (7)

References (21)
  • 2
    • 3943070430 scopus 로고    scopus 로고
    • A dynamical systems approach to failure prognosis
    • Chelidze D and Cusumano J 2004 A dynamical systems approach to failure prognosis J. Vib. Acoust. 126 1-7
    • (2004) J. Vib. Acoust. , vol.126 , Issue.1 , pp. 2-7
    • Chelidze, D.1    Cusumano, J.2
  • 3
    • 34250781030 scopus 로고    scopus 로고
    • Real-time fatigue life estimation in mechanical structures
    • Gupta S and Ray A 2007 Real-time fatigue life estimation in mechanical structures Meas. Sci. Technol. 18 1947-57
    • (2007) Meas. Sci. Technol. , vol.18 , Issue.7 , pp. 1947-1957
    • Gupta, S.1    Ray, A.2
  • 4
    • 17644398210 scopus 로고    scopus 로고
    • Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics
    • Li C and Lee H 2005 Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics Mech. Syst. Signal Process. 9 836-46
    • (2005) Mech. Syst. Signal Process. , vol.9 , pp. 836-846
    • Li, C.1    Lee, H.2
  • 5
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural-network forecasting techniques-case study: River flow forecasting
    • Atiya A, El-Shoura S, Shaheen S and El-Sherif M 1999 A comparison between neural-network forecasting techniques-case study: river flow forecasting IEEE Trans. Neural Netw. 10 402-9
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.2 , pp. 402-409
    • Atiya, A.1    El-Shoura, S.2    Shaheen, S.3    El-Sherif, M.4
  • 6
    • 0028401357 scopus 로고
    • Recurrent neural networks and robust time series prediction
    • Connor J, Martin R and Atlas L 1994 Recurrent neural networks and robust time series prediction IEEE Trans. Neural Netw. 5 240-54
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.2 , pp. 240-254
    • Connor, J.1    Martin, R.2    Atlas, L.3
  • 7
    • 0032643704 scopus 로고    scopus 로고
    • Prediction of machine deterioration using vibration based fault trends and recurrent neural networks
    • Tse P and Atherton D 1999 Prediction of machine deterioration using vibration based fault trends and recurrent neural networks J. Vib. Acoust. 121 355-62
    • (1999) J. Vib. Acoust. , vol.121 , pp. 355-362
    • Tse, P.1    Atherton, D.2
  • 8
    • 33645001792 scopus 로고    scopus 로고
    • Improving signal prediction performance of neural networks through multiresolution learning approach
    • Liang Y and Liang X 2006 Improving signal prediction performance of neural networks through multiresolution learning approach IEEE Trans. Syst. Man Cybern. B 36 341-52
    • (2006) IEEE Trans. Syst. Man Cybern. , vol.36 , Issue.2 , pp. 341-352
    • Liang, Y.1    Liang, X.2
  • 11
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang J 1993 ANFIS: adaptive-network-based fuzzy inference system IEEE Trans. Syst. Man Cybern. 23 665-85
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.1
  • 12
    • 2442503629 scopus 로고    scopus 로고
    • Prognosis of machine health condition using neuro-fuzzy systems
    • Wang W, Golnaraghi F and Ismail F 2004 Prognosis of machine health condition using neuro-fuzzy systems Mech. Syst. Signal Process. 18 813-31
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.4 , pp. 813-831
    • Wang, W.1    Golnaraghi, F.2    Ismail, F.3
  • 13
    • 33750515020 scopus 로고    scopus 로고
    • An adaptive predictor for dynamic system forecasting
    • Wang W 2007 An adaptive predictor for dynamic system forecasting Mech. Syst. Signal Process. 21 809-23
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.2 , pp. 809-823
    • Wang, W.1
  • 14
    • 7244232556 scopus 로고    scopus 로고
    • A neuro-fuzzy approach for gear system monitoring
    • Wang W, Ismail F and Golnaraghi F 2004 A neuro-fuzzy approach for gear system monitoring IEEE Trans. Fuzzy Syst. 12 710-23
    • (2004) IEEE Trans. Fuzzy Syst. , vol.12 , Issue.5 , pp. 710-723
    • Wang, W.1    Ismail, F.2    Golnaraghi, F.3
  • 17
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight specification in fuzzy rule-based classification systems
    • Ishibuchi H and Yamamoto T 2005 Rule weight specification in fuzzy rule-based classification systems IEEE Trans. Fuzzy Syst. 13 428-35
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.4 , pp. 428-435
    • Ishibuchi, H.1    Yamamoto, T.2
  • 18
    • 0034343476 scopus 로고    scopus 로고
    • Adaptive rule weights in neuro-fuzzy systems
    • Nauck D 2000 Adaptive rule weights in neuro-fuzzy systems J. Neural Comput. Appl. 9 60-70
    • (2000) J. Neural Comput. Appl. , vol.9 , Issue.1 , pp. 60-70
    • Nauck, D.1
  • 19
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey M and Glass L 1977 Oscillation and chaos in physiological control systems Science 197 287-9
    • (1977) Science , vol.197 , Issue.4300 , pp. 287-289
    • MacKey, M.1    Glass, L.2
  • 20
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R and Zisper D 1989 A learning algorithm for continually running fully recurrent neural networks Neural Comput. 1 270-80
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.1    Zisper, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.