메뉴 건너뛰기




Volumn 130, Issue 1, 2007, Pages 1-24

The geometry at infinity of a hyperbolic Riemann surface of infinite type

Author keywords

Dirichlet polygon; Geodesic; Hyperbolic surface

Indexed keywords


EID: 36148931075     PISSN: 00465755     EISSN: 15729168     Source Type: Journal    
DOI: 10.1007/s10711-007-9195-z     Document Type: Article
Times cited : (5)

References (9)
  • 3
    • 0010886807 scopus 로고
    • Hyperbolic structures for surfaces of infinite type
    • 1
    • Basmajian A. (1993). Hyperbolic structures for surfaces of infinite type. Trans. Amer. Math Soc. 336(1): 421-444
    • (1993) Trans. Amer. Math Soc. , vol.336 , pp. 421-444
    • Basmajian, A.1
  • 5
    • 0030458613 scopus 로고    scopus 로고
    • Dirichlet points, Garnett points, and Infinite ends of hyperbolic surfaces. i
    • 1
    • Haas A. (1996). Dirichlet points, Garnett points and Infinite ends of hyperbolic surfaces. I. Ann. Acad. Sci. Fenn. Math. 21(1): 3-29
    • (1996) Ann. Acad. Sci. Fenn. Math. , vol.21 , pp. 3-29
    • Haas, A.1
  • 6
    • 0000742744 scopus 로고
    • Fixed points, Koebe uniformization and circle packings
    • 2
    • He Z.-X. and Schramm O. (1993). Fixed points, Koebe uniformization and circle packings. Ann. Math. 137(2): 369-406
    • (1993) Ann. Math. , vol.137 , pp. 369-406
    • He, Z.-X.1    Schramm, O.2
  • 7
    • 84972489374 scopus 로고
    • A compactness theorem for Fuchsian groups of the second kind
    • 4
    • Matelski J.P. (1976). A compactness theorem for Fuchsian groups of the second kind. Duke Math. J. 43(4): 829-840
    • (1976) Duke Math. J. , vol.43 , pp. 829-840
    • Matelski, J.P.1
  • 8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.