-
2
-
-
0000615571
-
An approximate solution technique not depending on small parameters: a special example
-
Liao S.-J. An approximate solution technique not depending on small parameters: a special example. Int. J. Non-Linear Mech. 30 (1995) 371-380
-
(1995)
Int. J. Non-Linear Mech.
, vol.30
, pp. 371-380
-
-
Liao, S.-J.1
-
3
-
-
0036489498
-
Modified Lindstedt-Poincare methods for some strongly non-linear oscillations, Part I: expansion of a constant
-
He J.-H. Modified Lindstedt-Poincare methods for some strongly non-linear oscillations, Part I: expansion of a constant. Int. J. Non-Linear Mech. 37 (2002) 309-314
-
(2002)
Int. J. Non-Linear Mech.
, vol.37
, pp. 309-314
-
-
He, J.-H.1
-
4
-
-
1642616365
-
Presenting a new method for the solution of non-linear problems
-
Amore P., and Aranda A. Presenting a new method for the solution of non-linear problems. Phys. Lett. A 316 (2003) 218-225
-
(2003)
Phys. Lett. A
, vol.316
, pp. 218-225
-
-
Amore, P.1
Aranda, A.2
-
5
-
-
0038294438
-
A new analytical approach to the Duffing-harmonic oscillator
-
Lim C.W., and Wu B.S. A new analytical approach to the Duffing-harmonic oscillator. Phys. Lett. A 311 (2003) 365-373
-
(2003)
Phys. Lett. A
, vol.311
, pp. 365-373
-
-
Lim, C.W.1
Wu, B.S.2
-
6
-
-
0141882931
-
Large amplitude non-linear oscillations of a general conservative system
-
Wu B.S., and Lim C.W. Large amplitude non-linear oscillations of a general conservative system. Int. J. Non-Linear Mech. 39 (2004) 859-870
-
(2004)
Int. J. Non-Linear Mech.
, vol.39
, pp. 859-870
-
-
Wu, B.S.1
Lim, C.W.2
-
7
-
-
15944389556
-
Improved Lindstedt-Poincaré method for the solution of non-linear problems
-
Amore P., and Aranda A. Improved Lindstedt-Poincaré method for the solution of non-linear problems. J. Sound Vibr. 283 (2005) 1115-1136
-
(2005)
J. Sound Vibr.
, vol.283
, pp. 1115-1136
-
-
Amore, P.1
Aranda, A.2
-
8
-
-
33748424980
-
An analytical approximate technique for a class of strongly non-linear oscillators
-
Wu B.S., Sun W.P., and Lim C.W. An analytical approximate technique for a class of strongly non-linear oscillators. Int. J. Non-Linear Mech. 41 (2006) 766-774
-
(2006)
Int. J. Non-Linear Mech.
, vol.41
, pp. 766-774
-
-
Wu, B.S.1
Sun, W.P.2
Lim, C.W.3
-
9
-
-
33745979117
-
Higher accuracy analytical approximations to the Duffing-Harmonic oscillator
-
Lim C.W., Wu B.S., and Sun W.P. Higher accuracy analytical approximations to the Duffing-Harmonic oscillator. J. Sound Vibr. 296 (2006) 1039-1045
-
(2006)
J. Sound Vibr.
, vol.296
, pp. 1039-1045
-
-
Lim, C.W.1
Wu, B.S.2
Sun, W.P.3
-
10
-
-
33745664224
-
A modified iteration perturbation method for some non-linear oscillation problems
-
Marinca V., and Herisanu N. A modified iteration perturbation method for some non-linear oscillation problems. Acta Mech. 184 (2006) 231-242
-
(2006)
Acta Mech.
, vol.184
, pp. 231-242
-
-
Marinca, V.1
Herisanu, N.2
-
11
-
-
33644954455
-
Solution of a quadratic non-linear oscillator by the method of harmonic balance
-
Hu H. Solution of a quadratic non-linear oscillator by the method of harmonic balance. J. Sound Vibr. 293 (2006) 462-468
-
(2006)
J. Sound Vibr.
, vol.293
, pp. 462-468
-
-
Hu, H.1
-
12
-
-
33644954455
-
Solutions of a quadratic non-linear oscillator: iteration procedure
-
Hu H. Solutions of a quadratic non-linear oscillator: iteration procedure. J. Sound Vibr. 298 (2006) 462-468
-
(2006)
J. Sound Vibr.
, vol.298
, pp. 462-468
-
-
Hu, H.1
-
13
-
-
33644600306
-
1 / 3 force oscillators
-
1 / 3 force oscillators. J. Sound Vibr. 292 (2006) 964-968
-
(2006)
J. Sound Vibr.
, vol.292
, pp. 964-968
-
-
Mickens, R.E.1
-
14
-
-
0032071709
-
Asymptotic expansions of the periodic solutions of non-linear evolution equations
-
Lukomsky V.P., and Bobkov V.B. Asymptotic expansions of the periodic solutions of non-linear evolution equations. Nonlinear Dyn. 16 (1998) 1-21
-
(1998)
Nonlinear Dyn.
, vol.16
, pp. 1-21
-
-
Lukomsky, V.P.1
Bobkov, V.B.2
-
15
-
-
0037808066
-
Periodic solutions of strongly quadratic non-linear oscillators by the elliptic perturbation method
-
Chen S.H., Yang X.M., and Cheung Y.K. Periodic solutions of strongly quadratic non-linear oscillators by the elliptic perturbation method. J. Sound Vibr. 212 (1998) 771-780
-
(1998)
J. Sound Vibr.
, vol.212
, pp. 771-780
-
-
Chen, S.H.1
Yang, X.M.2
Cheung, Y.K.3
-
16
-
-
0037808065
-
Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt-Poincaré method
-
Chen S.H., Yang X.M., and Cheung Y.K. Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt-Poincaré method. J Sound Vibr. 227 (1999) 1109-1118
-
(1999)
J Sound Vibr.
, vol.227
, pp. 1109-1118
-
-
Chen, S.H.1
Yang, X.M.2
Cheung, Y.K.3
-
17
-
-
0037412198
-
An analytic approximate technique for free oscillations of positively damped systems with algebracally decaying amplitude
-
Liao S.-J. An analytic approximate technique for free oscillations of positively damped systems with algebracally decaying amplitude. Int. J. Non-Linear Mech. 38 (2003) 1173-1183
-
(2003)
Int. J. Non-Linear Mech.
, vol.38
, pp. 1173-1183
-
-
Liao, S.-J.1
-
18
-
-
0141905286
-
Harmonic balance based averaging: approximate realizations of an asymptotic technique
-
Chatterjee A. Harmonic balance based averaging: approximate realizations of an asymptotic technique. Nonlinear Dyn. 32 (2003) 323-343
-
(2003)
Nonlinear Dyn.
, vol.32
, pp. 323-343
-
-
Chatterjee, A.1
-
19
-
-
0041344539
-
Multiple scales via Galerkin projections: approximate asymptotics for strongly non-linear oscillations
-
Das S.L., and Chatterjee A. Multiple scales via Galerkin projections: approximate asymptotics for strongly non-linear oscillations. Nonlinear Dyn. 32 (2003) 161-186
-
(2003)
Nonlinear Dyn.
, vol.32
, pp. 161-186
-
-
Das, S.L.1
Chatterjee, A.2
-
20
-
-
24644523427
-
Higher-order pseudoaveraging via harmonic balance for strongly non-linear oscillations
-
Nandakumar K., and Chatterjee A. Higher-order pseudoaveraging via harmonic balance for strongly non-linear oscillations. J. Vibr. Acoust. 127 (2005) 416-419
-
(2005)
J. Vibr. Acoust.
, vol.127
, pp. 416-419
-
-
Nandakumar, K.1
Chatterjee, A.2
-
21
-
-
33947122679
-
-
note
-
11This seems to be an error on the printed article, since it was published in 2007. 1248-1254.
-
-
-
-
22
-
-
0030416838
-
The Melnikov theory for subharmonics and their bifurcations in forced oscillators
-
Yagasaki K. The Melnikov theory for subharmonics and their bifurcations in forced oscillators. SIAM J. Appl. Math. 56 (1996) 1720-1765
-
(1996)
SIAM J. Appl. Math.
, vol.56
, pp. 1720-1765
-
-
Yagasaki, K.1
|