-
1
-
-
84966247266
-
The Gauss-Bonnet theorem for Riemannian polyhedra
-
Allendoerfer C.B., and Weil A. The Gauss-Bonnet theorem for Riemannian polyhedra. Trans. Amer. Math. Soc. 53 (1943) 101-129
-
(1943)
Trans. Amer. Math. Soc.
, vol.53
, pp. 101-129
-
-
Allendoerfer, C.B.1
Weil, A.2
-
2
-
-
27844574729
-
On the roots of a random system of equations. The theorem on Shub and Smale and some extensions
-
Azaïs J.-M., and Wschebor M. On the roots of a random system of equations. The theorem on Shub and Smale and some extensions. Found. Comput. Math. 5 2 (2005) 125-144
-
(2005)
Found. Comput. Math.
, vol.5
, Issue.2
, pp. 125-144
-
-
Azaïs, J.-M.1
Wschebor, M.2
-
4
-
-
0007288995
-
On the kinematic formula in integral geometry
-
Chern S.S. On the kinematic formula in integral geometry. J. Math. Mech. 16 (1966) 101-118
-
(1966)
J. Math. Mech.
, vol.16
, pp. 101-118
-
-
Chern, S.S.1
-
6
-
-
0000765898
-
The kinematic formula in Riemannian homogeneous spaces
-
Howard R. The kinematic formula in Riemannian homogeneous spaces. Mem. Amer. Math. Soc. 106 509 (1993) vi+69
-
(1993)
Mem. Amer. Math. Soc.
, vol.106
, Issue.509
-
-
Howard, R.1
-
8
-
-
2042436402
-
High probability analysis of the condition number of sparse polynomial systems
-
Malajovich G., and Rojas J.M. High probability analysis of the condition number of sparse polynomial systems. Theoret. Comput. Sci. 315 2-3 (2004) 524-555
-
(2004)
Theoret. Comput. Sci.
, vol.315
, Issue.2-3
, pp. 524-555
-
-
Malajovich, G.1
Rojas, J.M.2
-
9
-
-
0036324756
-
The expected number of real roots of a multihomogeneous system of polynomial equations
-
McLennan A. The expected number of real roots of a multihomogeneous system of polynomial equations. Amer. J. Math. 124 1 (2002) 49-73
-
(2002)
Amer. J. Math.
, vol.124
, Issue.1
, pp. 49-73
-
-
McLennan, A.1
-
10
-
-
84972529317
-
On Chern's kinematic formula in integral geometry
-
Nijenhuis A. On Chern's kinematic formula in integral geometry. J. Differential Geometry 9 (1974) 475-482
-
(1974)
J. Differential Geometry
, vol.9
, pp. 475-482
-
-
Nijenhuis, A.1
-
11
-
-
30644473198
-
The mean value of the Euler characteristic of an algebraic hypersurface
-
English translation
-
Podkorytov S.S. The mean value of the Euler characteristic of an algebraic hypersurface. Algebra i Analiz 11 5 (1999) 185-193 English translation
-
(1999)
Algebra i Analiz
, vol.11
, Issue.5
, pp. 185-193
-
-
Podkorytov, S.S.1
-
12
-
-
36049047230
-
The mean value of the Euler characteristic of an algebraic hypersurface
-
Podkorytov S.S. The mean value of the Euler characteristic of an algebraic hypersurface. St. Petersburg Math. J. 11 5 (2000) 853-860
-
(2000)
St. Petersburg Math. J.
, vol.11
, Issue.5
, pp. 853-860
-
-
Podkorytov, S.S.1
-
13
-
-
0009844162
-
On the average number of real roots of certain random sparse polynomial systems
-
The Mathematics of Numerical Analysis. Park City, UT, 1995, Amer. Math. Soc., Providence, RI
-
Rojas J.M. On the average number of real roots of certain random sparse polynomial systems. The Mathematics of Numerical Analysis. Park City, UT, 1995. Lectures in Appl. Math. vol. 32 (1996), Amer. Math. Soc., Providence, RI 689-699
-
(1996)
Lectures in Appl. Math.
, vol.32
, pp. 689-699
-
-
Rojas, J.M.1
-
15
-
-
0000537756
-
Complexity of Bézout's theorem II: volumes and probabilities
-
Computational Algebraic Geometry. Eyssette F., and Galligo A. (Eds), Birkhäuser
-
Shub M., and Smale S. Complexity of Bézout's theorem II: volumes and probabilities. In: Eyssette F., and Galligo A. (Eds). Computational Algebraic Geometry. Progress in Mathematics vol. 109 (1993), Birkhäuser 267-285
-
(1993)
Progress in Mathematics
, vol.109
, pp. 267-285
-
-
Shub, M.1
Smale, S.2
-
16
-
-
0038336161
-
Euler characteristics for Gaussian fields on manifolds
-
Taylor J.E., and Adler R.J. Euler characteristics for Gaussian fields on manifolds. Ann. Probab. 31 2 (2003) 533-563
-
(2003)
Ann. Probab.
, vol.31
, Issue.2
, pp. 533-563
-
-
Taylor, J.E.1
Adler, R.J.2
-
17
-
-
0000045032
-
On the volume of tubes
-
Weyl H. On the volume of tubes. Amer. J. Math. 61 2 (1939) 461-472
-
(1939)
Amer. J. Math.
, vol.61
, Issue.2
, pp. 461-472
-
-
Weyl, H.1
-
18
-
-
27844520953
-
On the Kostlan-Shub-Smale model for random polynomial systems. Variance of the number of roots
-
Wschebor M. On the Kostlan-Shub-Smale model for random polynomial systems. Variance of the number of roots. J. Complexity 21 6 (2005) 773-789
-
(2005)
J. Complexity
, vol.21
, Issue.6
, pp. 773-789
-
-
Wschebor, M.1
|