메뉴 건너뛰기




Volumn 1, Issue 1, 2007, Pages 101-109

Semidefinite optimization models for limit and shakedown analysis problems involving matrix spreads

Author keywords

Limit analysis; Matrix spread; Mohr coulomb criterion; Semidefinite programming; Shakedown analysis; Tresca criterion

Indexed keywords

LIMIT ANALYSIS; MATRIX; MOHR COULOMB CRITERION; SEMIDEFINITE PROGRAMMING; SHAKEDOWN ANALYSIS; TRESCA CRITERIA;

EID: 36048948119     PISSN: 18624472     EISSN: 18624480     Source Type: Journal    
DOI: 10.1007/s11590-006-0006-5     Document Type: Article
Times cited : (10)

References (16)
  • 2
    • 0001326912 scopus 로고
    • Shakedown theory in perfect elastoplasticity with associated and nonassociated flow laws: A finite element, linear programming approach
    • Maier, G.: Shakedown theory in perfect elastoplasticity with associated and nonassociated flow laws: a finite element, linear programming approach. Meccanica 4, 250-260 (1969)
    • (1969) Meccanica , vol.4 , pp. 250-260
    • Maier, G.1
  • 4
    • 0019007230 scopus 로고
    • Finite elementmethod and limit analysis theory for soil mechanics problems
    • Bottero,A., Negre, R., Pastor, J., Turgeman, S.: Finite elementmethod and limit analysis theory for soil mechanics problems. Comput. Methods Appl. Mech. Eng. 22, 131-149 (1980)
    • (1980) Comput. Methods Appl. Mech. Eng , vol.22 , pp. 131-149
    • Christiansen, E.1
  • 5
  • 6
    • 80052914179 scopus 로고    scopus 로고
    • Numerical Methods forLimit and Shakedown Analysis
    • eds, J.v. Neumann Institute for Computing, Juelich.Available at
    • Heitzer, M., Staat, M. (eds.): Numerical Methods forLimit and Shakedown Analysis. NIC-Series vol. 15. J.v. Neumann Institute for Computing, Juelich.Available at http://www.fz-juelich.de/lisa
    • NIC-Series , vol.15
    • Heitzer, M.1    Staat, M.2
  • 7
    • 85040890625 scopus 로고
    • Nonlinear analysis in soil mechanics
    • Elsevier, Amsterdam
    • Chen, W.F., Mizuno, E.: Nonlinear Analysis in Soil Mechanics. Theory and Implementation. Elsevier, Amsterdam (1990)
    • (1990) Theory and Implementation
    • Chen, W.F.1    Mizuno, E.2
  • 8
    • 12344276379 scopus 로고    scopus 로고
    • Second-order cone programming approaches to static shakedown analysis in steel plasticity
    • Bisbos, C.D., Makrodimopoulos, A., Pardalos, P.M.: Second-order cone programming approaches to static shakedown analysis in steel plasticity. Optim. Methods Softw. 20, 25-52 (2005)
    • (2005) Optim. Methods Softw , vol.20 , pp. 25-52
    • Bisbos, C.D.1    Makrodimopoulos, A.2    Pardalos, P.M.3
  • 9
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49-95 (1996)
    • (1996) SIAM Rev , vol.38 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.2
  • 13
    • 3142688043 scopus 로고    scopus 로고
    • An independent benchmarking of SDP and SOCP solvers
    • Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. 95, 407-430 (2003)
    • (2003) Math. Program , vol.95 , pp. 407-430
    • Mittelmann, H.D.1
  • 14
    • 84971151492 scopus 로고
    • The spread of a matrix
    • Mirsky, L.: The spread of a matrix. Mathematika 3, 127-130 (1956)
    • (1956) Mathematika , vol.3 , pp. 127-130
    • Mirsky, L.1
  • 15
    • 84972545814 scopus 로고
    • The greatest distance between two characteristic roots of a matrix
    • Brauer, A., Mewborn, A.C.: The greatest distance between two characteristic roots of a matrix. Duke Math. J. 26, 653-661 (1959)
    • (1959) Duke Math. J , vol.26 , pp. 653-661
    • Brauer, A.1    Mewborn, A.C.2
  • 16
    • 0026627385 scopus 로고
    • Shakedown with nonlinear strain-hardening including structural computation using finite element method
    • Stein, E., Zhang, G., König, J.A.: Shakedown with nonlinear strain-hardening including structural computation using finite element method. Int. J. Plast. 8, 1-31 (1992)
    • (1992) Int. J. Plast , vol.8 , pp. 1-31
    • Stein, E.1    Zhang, G.2    König, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.