-
1
-
-
34250090755
-
Snakes: Active contour models
-
M. Kass, A. Witkin, and D. Terzopoulos, " Snakes: active contour models., " Int. J. Comput. Vis. 1, 321-331 (1988).
-
(1988)
Int. J. Comput. Vis.
, vol.1
, pp. 321-331
-
-
Kass, M.1
Witkin, A.2
Terzopoulos, D.3
-
2
-
-
0032028944
-
Snakes, shapes, and gradient vector flow
-
C. Xu and J. L. Prince, " Snakes, shapes, and gradient vector flow., " IEEE Trans. Image Process. 7, 359-369 (1998).
-
(1998)
IEEE Trans. Image Process.
, vol.7
, pp. 359-369
-
-
Xu, C.1
Prince, J.L.2
-
3
-
-
0035248691
-
Active contour model with gradient directional information: Directional snake
-
H. W. Park, T. Schoepflin, and Y. Kim, " Active contour model with gradient directional information: directional snake., " IEEE Trans. Circuits Syst. Video Technol. 11, 252-256 (2001).
-
(2001)
IEEE Trans. Circuits Syst. Video Technol.
, vol.11
, pp. 252-256
-
-
Park, H.W.1
Schoepflin, T.2
Kim, Y.3
-
4
-
-
4344607611
-
Efficient energies and algorithms for parametric snakes
-
M. Jacob, T. Blu, and M. Unser, " Efficient energies and algorithms for parametric snakes., " IEEE Trans. Image Process. 13, 1231-1244 (2004).
-
(2004)
IEEE Trans. Image Process.
, vol.13
, pp. 1231-1244
-
-
Jacob, M.1
Blu, T.2
Unser, M.3
-
5
-
-
33646871537
-
Dynamic directional gradient vector flow for snakes
-
J. Cheng and S. W. Foo, " Dynamic directional gradient vector flow for snakes., " IEEE Trans. Image Process. 15, 1563-1571 (2006).
-
(2006)
IEEE Trans. Image Process.
, vol.15
, pp. 1563-1571
-
-
Cheng, J.1
Foo, S.W.2
-
6
-
-
33747760724
-
Simultaneously improving the global and local properties of virtual electric field
-
G. Zhu, Q. Zeng, and C. Wang, " Simultaneously improving the global and local properties of virtual electric field., " Electron. Lett. 42, 967-968 (2006).
-
(2006)
Electron. Lett.
, vol.42
, pp. 967-968
-
-
Zhu, G.1
Zeng, Q.2
Wang, C.3
-
7
-
-
34249767150
-
A geometric model for active contours in image processing
-
V. Caselles, F. Catte, T. Coll, and F. Dibos, " A geometric model for active contours in image processing., " Numer. Math. 66, 1-31 (1993).
-
(1993)
Numer. Math.
, vol.66
, pp. 1-31
-
-
Caselles, V.1
Catte, F.2
Coll, T.3
Dibos, F.4
-
8
-
-
0029255247
-
Shape modeling with front propagation: A level set approach
-
R. Malladi, J. A. Sethian, and B. C. Vemuri, " Shape modeling with front propagation: a level set approach., " IEEE Trans. Pattern Anal. Mach. Intell. 17, 158-175 (1995).
-
(1995)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.17
, pp. 158-175
-
-
Malladi, R.1
Sethian, J.A.2
Vemuri, B.C.3
-
9
-
-
0030488811
-
Conformal curvature flows: From phase transitions to active contours
-
S. Kichenesamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, " Conformal curvature flows: from phase transitions to active contours., " Arch. Ration. Mech. Anal. 134, 275-301 (1996).
-
(1996)
Arch. Ration. Mech. Anal.
, vol.134
, pp. 275-301
-
-
Kichenesamy, S.1
Kumar, A.2
Olver, P.3
Tannenbaum, A.4
Yezzi, A.5
-
10
-
-
0031071476
-
Geodesic active contours
-
V. Caselles, R. Kimmel, and G. Sapiro, " Geodesic active contours., " Int. J. Comput. Vis. 22, 61-79 (1997).
-
(1997)
Int. J. Comput. Vis.
, vol.22
, pp. 61-79
-
-
Caselles, V.1
Kimmel, R.2
Sapiro, G.3
-
12
-
-
0038266749
-
Regularized Laplacian zero crossings as optimal edge integrators
-
R. Kimmel and A. M. Bruckstein, " Regularized Laplacian zero crossings as optimal edge integrators., " Int. J. Comput. Vis. 53, 225-243 (2003).
-
(2003)
Int. J. Comput. Vis.
, vol.53
, pp. 225-243
-
-
Kimmel, R.1
Bruckstein, A.M.2
-
13
-
-
33751420604
-
Dual geometric active contour for image segmentation
-
G. Zhu, Q. Zeng, and C. Wang, " Dual geometric active contour for image segmentation., " Opt. Eng. 45, 080505 (2006).
-
(2006)
Opt. Eng.
, vol.45
, pp. 080505
-
-
Zhu, G.1
Zeng, Q.2
Wang, C.3
|