메뉴 건너뛰기




Volumn 73, Issue 21, 2007, Pages 7029-7040

Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton

Author keywords

[No Author keywords available]

Indexed keywords

BIODIVERSITY; DECOMPOSITION; DEGRADATION; ECOSYSTEMS; ELECTRIC CURRENTS; PHYTOPLANKTON;

EID: 35948974364     PISSN: 00992240     EISSN: None     Source Type: Journal    
DOI: 10.1128/AEM.01209-07     Document Type: Article
Times cited : (66)

References (52)
  • 1
    • 0028190426 scopus 로고
    • org flux on diagenetic reaction balances
    • org flux on diagenetic reaction balances. J. Mar. Res. 52:259-295.
    • (1994) J. Mar. Res , vol.52 , pp. 259-295
    • Aller, R.C.1
  • 2
    • 0028192463 scopus 로고
    • Redfield ratios of remineralization determined by nutrient data analysis
    • Andersen, L. A., and J. L. Sarmiento. 1994. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 8:65-80.
    • (1994) Glob. Biogeochem. Cycles , vol.8 , pp. 65-80
    • Andersen, L.A.1    Sarmiento, J.L.2
  • 4
    • 0037127004 scopus 로고    scopus 로고
    • Electrode-reducing microorganisms that harvest energy from marine sediments
    • Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483-485.
    • (2002) Science , vol.295 , pp. 483-485
    • Bond, D.R.1    Holmes, D.E.2    Tender, L.M.3    Lovley, D.R.4
  • 5
    • 0037337606 scopus 로고    scopus 로고
    • Electricity production by Geobacter sulfurreducens attached to electrodes
    • Bond, D. R., and D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Env. Microbiol. 69:1548-1555.
    • (2003) Appl. Env. Microbiol , vol.69 , pp. 1548-1555
    • Bond, D.R.1    Lovley, D.R.2
  • 6
    • 0037280886 scopus 로고    scopus 로고
    • Anaerobic carbon transformation: Experimental studies with flow-through cells
    • Bruchert, V., and C. Arnosti. 2003. Anaerobic carbon transformation: experimental studies with flow-through cells. Mar. Chem. 80:171-183.
    • (2003) Mar. Chem , vol.80 , pp. 171-183
    • Bruchert, V.1    Arnosti, C.2
  • 7
    • 33847721392 scopus 로고    scopus 로고
    • Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets?
    • Burdige, D. J. 2007. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107:467-485.
    • (2007) Chem. Rev , vol.107 , pp. 467-485
    • Burdige, D.J.1
  • 8
    • 84944816274 scopus 로고
    • Spectrophotometric determination of hydrogen sulfide in natural waters
    • Cline, J. D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14:454-458.
    • (1969) Limnol. Oceanogr , vol.14 , pp. 454-458
    • Cline, J.D.1
  • 9
    • 0035807131 scopus 로고    scopus 로고
    • Molecular characterization of estuarine bacterial communities that use high- and low-molecular weight fractions of dissolved organic carbon
    • Covert, J. S., and M. A. Moran. 2001. Molecular characterization of estuarine bacterial communities that use high- and low-molecular weight fractions of dissolved organic carbon. Aquat. Microbiol. Ecol. 25:127-139.
    • (2001) Aquat. Microbiol. Ecol , vol.25 , pp. 127-139
    • Covert, J.S.1    Moran, M.A.2
  • 10
    • 0027801562 scopus 로고
    • Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages
    • DeLong, E. F., D. G. Franks, and A. L. Alldredge. 1993. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 38:924-934.
    • (1993) Limnol. Oceanogr , vol.38 , pp. 924-934
    • DeLong, E.F.1    Franks, D.G.2    Alldredge, A.L.3
  • 12
    • 33751078830 scopus 로고    scopus 로고
    • Effect of electrode potential on electrode-reducing microbiota
    • Finkelstein, D. A., L. M. Tender, and J. G. Zeikus. 2006. Effect of electrode potential on electrode-reducing microbiota. Environ. Sci. Technol. 40:6990-6995.
    • (2006) Environ. Sci. Technol , vol.40 , pp. 6990-6995
    • Finkelstein, D.A.1    Tender, L.M.2    Zeikus, J.G.3
  • 13
    • 34247260532 scopus 로고    scopus 로고
    • Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation
    • Freguia, S., K. Rabaey, Z. Yuan, and J. Keller. 2007. Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ. Sci. Technol. 41:2915-2921.
    • (2007) Environ. Sci. Technol , vol.41 , pp. 2915-2921
    • Freguia, S.1    Rabaey, K.2    Yuan, Z.3    Keller, J.4
  • 15
    • 0036329779 scopus 로고    scopus 로고
    • Decomposition of phytoplankton in seawater. I. Kinetic analysis of the effect of organic matter concentration
    • Fujii, M., S. Murashige, Y. Ohnishi, A. Yuzawa, H. Miyasaka, Y. Suzuki, and H. Komiyama. 2002. Decomposition of phytoplankton in seawater. I. Kinetic analysis of the effect of organic matter concentration. J. Oceanogr. 58:433-438.
    • (2002) J. Oceanogr , vol.58 , pp. 433-438
    • Fujii, M.1    Murashige, S.2    Ohnishi, Y.3    Yuzawa, A.4    Miyasaka, H.5    Suzuki, Y.6    Komiyama, H.7
  • 16
    • 0141815960 scopus 로고    scopus 로고
    • Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor
    • Girguis, P. R., V. J. Orphan, S. J. Hallam, and E. F. DeLong. 2003. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl. Environ. Microbiol. 69:5472-5482.
    • (2003) Appl. Environ. Microbiol , vol.69 , pp. 5472-5482
    • Girguis, P.R.1    Orphan, V.J.2    Hallam, S.J.3    DeLong, E.F.4
  • 17
    • 0029516516 scopus 로고
    • Kinetics of phytoplankton decay during simulated sedimentation: Changes in biochemical composition and microbial activity under oxic and anoxic conditions
    • Harvey, H. R., J. H. Tuttle, and J. T. Bell. 1995. Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim. Cosmochim. Acta 59:3367-3377.
    • (1995) Geochim. Cosmochim. Acta , vol.59 , pp. 3367-3377
    • Harvey, H.R.1    Tuttle, J.H.2    Bell, J.T.3
  • 18
    • 22344440626 scopus 로고    scopus 로고
    • Electricity generation from artificial wastewater using an upflow microbial fuel cell
    • He, Z., S. D. Minteer, and L. T. Angenent. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 39:5262-5267.
    • (2005) Environ. Sci. Technol , vol.39 , pp. 5262-5267
    • He, Z.1    Minteer, S.D.2    Angenent, L.T.3
  • 19
    • 0035664857 scopus 로고    scopus 로고
    • Dissolved organic carbon production and consumption in anoxic marine sediments: A pulsed-tracer experiment
    • Hee, C. A., T. K. Pease, M. J. Alperin, and C. S. Martens. 2001. Dissolved organic carbon production and consumption in anoxic marine sediments: a pulsed-tracer experiment. Limnol. Oceanogr. 46:1908-1920.
    • (2001) Limnol. Oceanogr , vol.46 , pp. 1908-1920
    • Hee, C.A.1    Pease, T.K.2    Alperin, M.J.3    Martens, C.S.4
  • 20
    • 2642518174 scopus 로고    scopus 로고
    • Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments
    • Holmes, D. E., D. R. Bond, R. A. O'Neil, C. E. Reimers, L. R. Tender, and D. R. Lovley. 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48:178-190.
    • (2004) Microb. Ecol , vol.48 , pp. 178-190
    • Holmes, D.E.1    Bond, D.R.2    O'Neil, R.A.3    Reimers, C.E.4    Tender, L.R.5    Lovley, D.R.6
  • 23
    • 84892303022 scopus 로고    scopus 로고
    • Bacteria and marine biogeochemistry
    • H. D. Schulz and M. Zabel ed, 2nd ed. Springer, Berlin, Germany
    • Jørgensen, B. B. 2006. Bacteria and marine biogeochemistry, p. 169-206. In H. D. Schulz and M. Zabel (ed.), Marine geochemistry, 2nd ed. Springer, Berlin, Germany.
    • (2006) Marine geochemistry , pp. 169-206
    • Jørgensen, B.B.1
  • 24
    • 0025921591 scopus 로고
    • Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark)
    • Jørgensen, B. B., and F. Bak. 1991. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Environ. Microbiol. 57:847-856.
    • (1991) Appl. Environ. Microbiol , vol.57 , pp. 847-856
    • Jørgensen, B.B.1    Bak, F.2
  • 25
    • 0037074898 scopus 로고    scopus 로고
    • A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians
    • Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians. Enzymol. Microbiol. Technol. 30:145-152.
    • (2002) Enzymol. Microbiol. Technol , vol.30 , pp. 145-152
    • Kim, H.J.1    Park, H.S.2    Hyun, M.S.3    Chang, I.S.4    Kim, M.5    Kim, B.H.6
  • 26
    • 3242707506 scopus 로고    scopus 로고
    • Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
    • Liu, H., and B. E. Logan. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38:4040-4046.
    • (2004) Environ. Sci. Technol , vol.38 , pp. 4040-4046
    • Liu, H.1    Logan, B.E.2
  • 27
    • 1842778990 scopus 로고    scopus 로고
    • Production of electricity during wastewater treatment using a single chamber microbial fuel cell
    • Liu, H., R. Ramnarayanan, and B. E. Logan. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38:2281-2285.
    • (2004) Environ. Sci. Technol , vol.38 , pp. 2281-2285
    • Liu, H.1    Ramnarayanan, R.2    Logan, B.E.3
  • 28
    • 0030661563 scopus 로고    scopus 로고
    • Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA
    • Liu, W.-T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516-4522.
    • (1997) Appl. Environ. Microbiol , vol.63 , pp. 4516-4522
    • Liu, W.-T.1    Marsh, T.L.2    Cheng, H.3    Forney, L.J.4
  • 29
    • 0344765523 scopus 로고    scopus 로고
    • Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hydridization
    • Llobet-Brossa, E., R. Rosselló-Mora, and R. Amann. 1998. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hydridization. Appl. Environ. Microbiol. 64:2691-2696.
    • (1998) Appl. Environ. Microbiol , vol.64 , pp. 2691-2696
    • Llobet-Brossa, E.1    Rosselló-Mora, R.2    Amann, R.3
  • 31
    • 33845496269 scopus 로고    scopus 로고
    • Microbial energizers: Fuel cells that keep on going
    • Lovley, D. R. 2006. Microbial energizers: fuel cells that keep on going. Microbe 1:323-329.
    • (2006) Microbe , vol.1 , pp. 323-329
    • Lovley, D.R.1
  • 32
    • 0000816703 scopus 로고
    • Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments
    • Lovley, D. R., and E. J. P. Phillips. 1987. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53:2636-2641.
    • (1987) Appl. Environ. Microbiol , vol.53 , pp. 2636-2641
    • Lovley, D.R.1    Phillips, E.J.P.2
  • 33
    • 0026036154 scopus 로고
    • Sulphide inhibition of anaerobic degradation of lactate and acetate
    • McCartney, D. M., and J. A. Oleskiewicz. 1991. Sulphide inhibition of anaerobic degradation of lactate and acetate. Water Res. 25:203-209.
    • (1991) Water Res , vol.25 , pp. 203-209
    • McCartney, D.M.1    Oleskiewicz, J.A.2
  • 34
    • 84986776913 scopus 로고
    • The dissociation of hydrogen sulfide in seawater
    • Millero, F. J., T. Plese, and M. Fernandez. 1988. The dissociation of hydrogen sulfide in seawater. Limnol. Oceanogr. 33:269-274.
    • (1988) Limnol. Oceanogr , vol.33 , pp. 269-274
    • Millero, F.J.1    Plese, T.2    Fernandez, M.3
  • 35
    • 28844458951 scopus 로고    scopus 로고
    • Electricity generation from swine wastewater using microbial fuel cells
    • Min, B., J. Kim, S. Oh, J. M. Regan, and B. E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39:4961-4968.
    • (2005) Water Res , vol.39 , pp. 4961-4968
    • Min, B.1    Kim, J.2    Oh, S.3    Regan, J.M.4    Logan, B.E.5
  • 36
    • 35948981368 scopus 로고    scopus 로고
    • Microbial decomposition of organic matter derived from phytoplankton cellular components in seawater
    • Ohnishi, Y., M. Fujii, S. Murashige, A. Yuzawa, H. Miyasaka, and Y. Suzuki. 2004. Microbial decomposition of organic matter derived from phytoplankton cellular components in seawater. Microbes Environ. 19:128-136.
    • (2004) Microbes Environ , vol.19 , pp. 128-136
    • Ohnishi, Y.1    Fujii, M.2    Murashige, S.3    Yuzawa, A.4    Miyasaka, H.5    Suzuki, Y.6
  • 37
    • 0017304611 scopus 로고
    • Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium
    • Pfenning, N., and H. Biebl. 1976. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110:3-12.
    • (1976) Arch. Microbiol , vol.110 , pp. 3-12
    • Pfenning, N.1    Biebl, H.2
  • 39
    • 0141565121 scopus 로고    scopus 로고
    • A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency
    • Rabaey, K., G. Lissens, S. D. Siciliano, and W. Verstraete. 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25:1531-1535.
    • (2003) Biotechnol. Lett , vol.25 , pp. 1531-1535
    • Rabaey, K.1    Lissens, G.2    Siciliano, S.D.3    Verstraete, W.4
  • 41
    • 0001289754 scopus 로고
    • The biological control of chemical factors in the environment
    • Redfield, A. C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46:205-221.
    • (1958) Am. Sci , vol.46 , pp. 205-221
    • Redfield, A.C.1
  • 43
    • 0035163594 scopus 로고    scopus 로고
    • Harvesting energy from the marine sediment-water interface
    • Reimers, C. E., L. M. Tender, S. Fertig, and W. Wang. 2001. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol. 35:192-195.
    • (2001) Environ. Sci. Technol , vol.35 , pp. 192-195
    • Reimers, C.E.1    Tender, L.M.2    Fertig, S.3    Wang, W.4
  • 44
    • 0042126784 scopus 로고    scopus 로고
    • Kinetics of microbially mediated reactions: Dissimilitory sulfate reduction in saltmarsh sediments (Sapelo Island, Georgia, USA)
    • Roychoudhury, A. N., P. Van Cappellan, J. E. Kostka, and E. Violler. 2003. Kinetics of microbially mediated reactions: dissimilitory sulfate reduction in saltmarsh sediments (Sapelo Island, Georgia, USA). Estuar. Coast. Shelf Sci. 56:1001-1010.
    • (2003) Estuar. Coast. Shelf Sci , vol.56 , pp. 1001-1010
    • Roychoudhury, A.N.1    Van Cappellan, P.2    Kostka, J.E.3    Violler, E.4
  • 45
    • 27744542626 scopus 로고    scopus 로고
    • Understanding the anodic mechanism of a seafloor fuel cell: Interactions between geochemistry and microbial activity
    • Ryckelynck, N., H. A. Stecher III, and C. E. Reimers. 2005. Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity. Biogeochemistry 76:113-139.
    • (2005) Biogeochemistry , vol.76 , pp. 113-139
    • Ryckelynck, N.1    Stecher III, H.A.2    Reimers, C.E.3
  • 46
    • 0001967434 scopus 로고
    • Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic sediment
    • Sørensen, J., D. Christensen, and B. B. Jørgensen. 1981. Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic sediment. Appl. Environ. Microbiol. 42:5-11.
    • (1981) Appl. Environ. Microbiol , vol.42 , pp. 5-11
    • Sørensen, J.1    Christensen, D.2    Jørgensen, B.B.3
  • 47
    • 35948992813 scopus 로고    scopus 로고
    • Suess, E., and P. J. Müller. 1980. Productivity sedimentation rate and sedimentary organic matter in the oceans. II. Elemental fractionation, p. 17-26. In Colloques Internationaux du C.N.R.S., 293. C.N.R.S., Paris, France.
    • Suess, E., and P. J. Müller. 1980. Productivity sedimentation rate and sedimentary organic matter in the oceans. II. Elemental fractionation, p. 17-26. In Colloques Internationaux du C.N.R.S., 293. C.N.R.S., Paris, France.
  • 49
    • 0021554323 scopus 로고
    • The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested
    • Westrich, J. T., and R. A. Berner. 1984. The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol. Oceanogr. 29:236-249.
    • (1984) Limnol. Oceanogr , vol.29 , pp. 236-249
    • Westrich, J.T.1    Berner, R.A.2
  • 50
    • 0000666863 scopus 로고
    • Substrates for sulfate reduction and methane production in intertidal sediments
    • Winfrey, M. R., and D. M. Ward. 1983. Substrates for sulfate reduction and methane production in intertidal sediments. Appl. Environ. Microbiol. 45:193-199.
    • (1983) Appl. Environ. Microbiol , vol.45 , pp. 193-199
    • Winfrey, M.R.1    Ward, D.M.2
  • 52
    • 0004252445 scopus 로고
    • 2nd ed. Prentice-Hall, Inc, Englewood Cliffs, NJ
    • Zar. J. H. 1984. Biostatistical analysis, 2nd ed. Prentice-Hall, Inc., Englewood Cliffs, NJ.
    • (1984) Biostatistical analysis
    • Zar, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.