메뉴 건너뛰기




Volumn 18, Issue 10, 2007, Pages 2469-2480

Efficient frequent subgraph mining algorithm

Author keywords

Frequent pattern mining; Frequent subgraph; Spanning tree; Subgraph isomorphism; Subtree isomorphism

Indexed keywords

ALGORITHMS; BIOLOGY; CHEMISTRY; COMPUTER NETWORKS; DATABASE SYSTEMS; WORLD WIDE WEB;

EID: 35948953219     PISSN: 10009825     EISSN: None     Source Type: Journal    
DOI: 10.1360/jos182469     Document Type: Article
Times cited : (29)

References (17)
  • 1
    • 2442483205 scopus 로고    scopus 로고
    • Mining molecular fragments: Finding relevant substructures of molecules
    • Borgelt C, Berhold MR. Mining molecular fragments: Finding relevant substructures of molecules. In: Proc. of the ICDM 2002. 2002. http://www.wi-lab.com/icdm02/
    • (2002) Proc. of the ICDM 2002
    • Borgelt, C.1    Berhold, M.R.2
  • 3
    • 35948954541 scopus 로고    scopus 로고
    • Applying algebraic mining method of graph substructures to mutageniesis data analysis
    • Inokuchi A, Washio T, Okada T, Motoda H. Applying algebraic mining method of graph substructures to mutageniesis data analysis. In: Proc. of the PAKDD. 2000. http://www.informatik.uni-trier.de/-ley/db/conf/pakdd/pakdd2000.html
    • (2000) Proc. of the PAKDD
    • Inokuchi, A.1    Washio, T.2    Okada, T.3    Motoda, H.4
  • 4
    • 84974733299 scopus 로고    scopus 로고
    • An apriori-based algorithm for mining frequent substructures from graph data
    • LNAI 1910
    • Inokuchi A, Washio T, Okada T. An apriori-based algorithm for mining frequent substructures from graph data. In: Proc. of the PKDD 2000. LNAI 1910, 2000. 13-23. http://eric.univ-lyon2.fr/-pkdd2000/
    • (2000) Proc. of the PKDD 2000 , pp. 13-23
    • Inokuchi, A.1    Washio, T.2    Okada, T.3
  • 5
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • Kuramochi M, Karypis G. Frequent subgraph discovery. In: Proc. of the ICDM 2001. 2001. http://www.cs.york.ac.uk/arch/neural/ Conferences/ICDM2001.html
    • (2001) Proc. of the ICDM 2001
    • Kuramochi, M.1    Karypis, G.2
  • 7
    • 35948954540 scopus 로고    scopus 로고
    • State of the art of graph-based data mining
    • Washio T, Motoda H. State of the art of graph-based data mining. In: Proc. of the SIGKDD 2003. http://www.sigkdd.org/kdd2003/
    • (2003) Proc. of the SIGKDD 2003
    • Washio, T.1    Motoda, H.2
  • 10
    • 32344444658 scopus 로고    scopus 로고
    • Discovering frequent topological structures from graph datasets
    • Chicago
    • Jin R, Wang C, Polshakov D, Parthasarathy S, Agrawal G. Discovering frequent topological structures from graph datasets. In: Proc. of the KDD 2005. Chicago, 2005. 606-611. http://www.sigkdd.org/kdd2005/
    • (2005) Proc. of the KDD 2005 , pp. 606-611
    • Jin, R.1    Wang, C.2    Polshakov, D.3    Parthasarathy, S.4    Agrawal, G.5
  • 12
    • 35948934868 scopus 로고    scopus 로고
    • Diagonally subgraphs pattern mining
    • Paris
    • Cohen M, Gudes E. Diagonally subgraphs pattern mining. In: Proc. of the DMKD 2004. Paris, 2004. http://www.informatik. uni-trier.de/-ley/db/conf/dmkd/dmkd2004.html
    • (2004) Proc. of the DMKD 2004
    • Cohen, M.1    Gudes, E.2
  • 15
    • 84947942216 scopus 로고    scopus 로고
    • Alogtime algorithms for tree isomorphism, comparison and canonization
    • LNCS 1289, Berlin: Springer-Verlag
    • Buss SR. Alogtime algorithms for tree isomorphism, comparison and canonization, In: Computational Logic and Proof Theory, Proc. of the 5th G-del Colloquium'97. LNCS 1289, Berlin: Springer-Verlag, 1997. 18-33.
    • (1997) Computational Logic and Proof Theory, Proc. of the 5th G-del Colloquium'97 , pp. 18-33
    • Buss, S.R.1
  • 16
    • 29844449569 scopus 로고    scopus 로고
    • Similarity evaluation on tree-structured data
    • Baltimore
    • Yang R, Kalnis P, Tung AKH. Similarity evaluation on tree-structured data. In: Proc. of the SIGMOD 2005. Baltimore, 2005. http://dret.net/biblio/reference/sigmod2005.html
    • (2005) Proc. of the SIGMOD 2005
    • Yang, R.1    Kalnis, P.2    Tung, A.K.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.