메뉴 건너뛰기




Volumn 23, Issue 6, 2007, Pages 1411-1419

Spline methods for the solution of hyperbolic equation with variable coefficients

Author keywords

Non polynomial cubic spline; Second order hyperbolic equation; Stability analysis

Indexed keywords


EID: 35948943125     PISSN: 0749159X     EISSN: 10982426     Source Type: Journal    
DOI: 10.1002/num.20229     Document Type: Article
Times cited : (11)

References (12)
  • 1
    • 17444391655 scopus 로고    scopus 로고
    • An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients
    • 1 R. K. Mohanty, An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients, Appl Math Comput 165 ( 2005), 229–236.
    • (2005) Appl Math Comput , vol.165 , pp. 229-236
    • Mohanty, R.K.1
  • 2
    • 0032474606 scopus 로고    scopus 로고
    • Fourth order approximations at first time level, linear stability analysis and the numerical solution of multi‐dimensional second order nonlinear hyperbolic equation in polar coordinates
    • 2 R. K. Mohanty, M. K. Jain, and K. George, Fourth order approximations at first time level, linear stability analysis and the numerical solution of multi‐dimensional second order nonlinear hyperbolic equation in polar coordinates, J Comput Appl 93 ( 1998), 1–12.
    • (1998) J Comput Appl , vol.93 , pp. 1-12
    • Mohanty, R.K.1    Jain, M.K.2    George, K.3
  • 3
    • 84966238003 scopus 로고
    • A note on the operator compact implicit method for the wave equation
    • 3 M. Ciment and S. H. Leventhal, A note on the operator compact implicit method for the wave equation, Math Comput 32 ( 1978), 143–147.
    • (1978) Math Comput , vol.32 , pp. 143-147
    • Ciment, M.1    Leventhal, S.H.2
  • 4
    • 0030170705 scopus 로고    scopus 로고
    • High order difference schemes for the system of two space dimensional second order nonlinear hyperbolic equations with variable coefficients
    • 4 R. K. Mohanty, M. K. Jain, and K. George, High order difference schemes for the system of two space dimensional second order nonlinear hyperbolic equations with variable coefficients, J Comput Appl Math 70 ( 1996), 231–243.
    • (1996) J Comput Appl Math , vol.70 , pp. 231-243
    • Mohanty, R.K.1    Jain, M.K.2    George, K.3
  • 5
    • 0030216940 scopus 로고    scopus 로고
    • On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients
    • 5 R. K. Mohanty, M. K. Jain, and K. George, On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients, J Comput Appl Math 72 ( 1996), 421–431.
    • (1996) J Comput Appl Math , vol.72 , pp. 421-431
    • Mohanty, R.K.1    Jain, M.K.2    George, K.3
  • 6
    • 4243982046 scopus 로고
    • Applications of spline to numerical solution of differential equations
    • 6 J. Rashidinia, Applications of spline to numerical solution of differential equations, M.Phil Dissertation, A. M. U., India, 1990.
    • (1990)
    • Rashidinia, J.1
  • 7
    • 0347975059 scopus 로고
    • An explicit difference method for the wave equation with extended stability range
    • 7 E. H. Twizel, An explicit difference method for the wave equation with extended stability range, BIT 19 ( 1979), 878–883.
    • (1979) BIT , vol.19 , pp. 878-883
    • Twizel, E.H.1
  • 8
    • 2342592014 scopus 로고    scopus 로고
    • An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficient in two space dimensions
    • 8 R. K. Mohanty, An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficient in two space dimensions, Appl Math Comput 152 ( 2004), 799–806.
    • (2004) Appl Math Comput , vol.152 , pp. 799-806
    • Mohanty, R.K.1
  • 9
    • 0029517526 scopus 로고
    • High accuracy difference schemes for a class of singular three space dimensional hyperbolic equations, Internat
    • 9 R. K. Mohanty, K. George, and M. K. Jain, High accuracy difference schemes for a class of singular three space dimensional hyperbolic equations, Internat, J Comput Math 56 ( 1995), 185–198.
    • (1995) J Comput Math , vol.56 , pp. 185-198
    • Mohanty, R.K.1    George, K.2    Jain, M.K.3
  • 10
    • 0942302128 scopus 로고    scopus 로고
    • A conditionally stable ADI method for the linear hyperbolic equation in three space dimensions
    • 10 R. K. Mohanty, M. K. Jain, and U. Arora, A conditionally stable ADI method for the linear hyperbolic equation in three space dimensions, Int J Comput Math 79 ( 2002), 133–142.
    • (2002) Int J Comput Math , vol.79 , pp. 133-142
    • Mohanty, R.K.1    Jain, M.K.2    Arora, U.3
  • 11
    • 31144443135 scopus 로고    scopus 로고
    • A survey on parametric spline function approximation
    • 11 A. Khan, I. Khan, and T. Aziz, A survey on parametric spline function approximation, Appl Math Comput 171 ( 2005), 983–1003.
    • (2005) Appl Math Comput , vol.171 , pp. 983-1003
    • Khan, A.1    Khan, I.2    Aziz, T.3
  • 12
    • 0004185630 scopus 로고
    • Numerical Solution of Differential Equations
    • 12 M. K. Jain, Numerical Solution of Differential Equations, 2nd ed., Wiley Eastern, New Delhi, 1984.
    • (1984)
    • Jain, M.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.