-
1
-
-
0036604583
-
Nonlinear bounded-error state estimation of continuous-time systems
-
Jaulin, L. Nonlinear bounded-error state estimation of continuous-time systems. Automatica 2002, 38, 1079-1082.
-
(2002)
Automatica
, vol.38
, pp. 1079-1082
-
-
Jaulin, L.1
-
2
-
-
0003440056
-
-
Springer-Verlag: London, U.K
-
Jaulin, L.; Kieffer, M.; Didrit, O.; Walter, É. Applied Interval Analysis; Springer-Verlag: London, U.K., 2001.
-
(2001)
Applied Interval Analysis
-
-
Jaulin, L.1
Kieffer, M.2
Didrit, O.3
Walter, E.4
-
4
-
-
0030779463
-
Interval Kalman filtering
-
Chen, G.; Wang, J.; Shieh, L. S. Interval Kalman filtering. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 250-258.
-
(1997)
IEEE Trans. Aerosp. Electron. Syst
, vol.33
, pp. 250-258
-
-
Chen, G.1
Wang, J.2
Shieh, L.S.3
-
5
-
-
0002913297
-
Recursive state estimation: Unknown but bounded errors and system inputs
-
Schweppe, F. C. Recursive state estimation: Unknown but bounded errors and system inputs. IEEE Trans. Autom Control 1968, 13, 22-28.
-
(1968)
IEEE Trans. Autom Control
, vol.13
, pp. 22-28
-
-
Schweppe, F.C.1
-
6
-
-
0004293209
-
-
Prentice-Hall: Englewood Cliffs, NJ
-
Moore, R. E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, 1966.
-
(1966)
Interval Analysis
-
-
Moore, R.E.1
-
7
-
-
0023386175
-
Constraint propagation with interval labels
-
Davis, E. Constraint propagation with interval labels. Artif. Intell. 1987, 32, 281-331.
-
(1987)
Artif. Intell
, vol.32
, pp. 281-331
-
-
Davis, E.1
-
8
-
-
3843074171
-
Set membership state and parameter estimation for systems described by nonlinear differential equations
-
Raïssi, T.; Ramdani, N.; Candau, Y. Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 2004, 40, 1771-1777.
-
(2004)
Automatica
, vol.40
, pp. 1771-1777
-
-
Raïssi, T.1
Ramdani, N.2
Candau, Y.3
-
10
-
-
0002265766
-
Validated solutions of initial value problems for ordinary differential equations
-
Nedialkov, N. S.; Jackson, K. R.; Corliss, G. F. Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 1999, 105, 21-68.
-
(1999)
Appl. Math. Comput
, vol.105
, pp. 21-68
-
-
Nedialkov, N.S.1
Jackson, K.R.2
Corliss, G.F.3
-
11
-
-
0002422258
-
Computations of guaranteed enclosures for the solutions of ordinary initial and boundary value problems
-
Cash, J, Gladwell, I, Eds, Clarendon Press: Oxford, U.K
-
Lohner, R. J. Computations of guaranteed enclosures for the solutions of ordinary initial and boundary value problems. In Computational Ordinary Differential Equations; Cash, J., Gladwell, I., Eds.; Clarendon Press: Oxford, U.K., 1992.
-
(1992)
Computational Ordinary Differential Equations
-
-
Lohner, R.J.1
-
12
-
-
0035724114
-
An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE
-
Nedialkov, N. S.; Jackson, K. R.; Pryce, J. D. An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE. Reliab. Comput. 2001, 7, 449-465.
-
(2001)
Reliab. Comput
, vol.7
, pp. 449-465
-
-
Nedialkov, N.S.1
Jackson, K.R.2
Pryce, J.D.3
-
13
-
-
0000329979
-
Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models
-
Berz, M.; Makino, K. Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 1998, 4, 361-369.
-
(1998)
Reliab. Comput
, vol.4
, pp. 361-369
-
-
Berz, M.1
Makino, K.2
-
14
-
-
34047210346
-
Validated solutions of initial value problems for parametric ODEs
-
Lin, Y.; Stadtherr, M. A. Validated solutions of initial value problems for parametric ODEs. Appl. Numer. Math. 2007, 57 (10), 1145-1162.
-
(2007)
Appl. Numer. Math
, vol.57
, Issue.10
, pp. 1145-1162
-
-
Lin, Y.1
Stadtherr, M.A.2
-
15
-
-
0002646206
-
Remainder differential algebras and their applications
-
Berz, M, Bishof, C, Corliss, G, Griewank, A, Eds, SIAM: Philadelphia, PA
-
Makino, K.; Berz, M. Remainder differential algebras and their applications. In Computational Differentiation: Techniques, Applications, and Tools; Berz, M., Bishof, C., Corliss, G., Griewank, A., Eds.; SIAM: Philadelphia, PA, 1996.
-
(1996)
Computational Differentiation: Techniques, Applications, and Tools
-
-
Makino, K.1
Berz, M.2
-
16
-
-
0001847776
-
Efficient control of the dependency problem based on Taylor model methods
-
Makino, K.; Berz, M. Efficient control of the dependency problem based on Taylor model methods. Reliab. Comput. 1999, 5, 3-12.
-
(1999)
Reliab. Comput
, vol.5
, pp. 3-12
-
-
Makino, K.1
Berz, M.2
-
17
-
-
47849093795
-
Validated solution of initial value problems for ODEs with interval parameters
-
Presented at the, Savannah, GA, February 22-24
-
Lin, Y.; Stadtherr, M. A. Validated solution of initial value problems for ODEs with interval parameters. Presented at the 2nd NSF Workshop on Reliable Engineering Computing, Savannah, GA, February 22-24, 2006.
-
(2006)
2nd NSF Workshop on Reliable Engineering Computing
-
-
Lin, Y.1
Stadtherr, M.A.2
-
18
-
-
47849100413
-
Interval observer design based on Taylor models for nonlinear uncertain continuous-time systems
-
Presented at the , Duisburg, Germany, September 26-29
-
Kletting, M.; Rauh, A.; Aschemann, H.; Hofer, E. P. Interval observer design based on Taylor models for nonlinear uncertain continuous-time systems. Presented at the 12th GAMM-IMACS International Symposion on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006), Duisburg, Germany, September 26-29, 2006.
-
(2006)
12th GAMM-IMACS International Symposion on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN
-
-
Kletting, M.1
Rauh, A.2
Aschemann, H.3
Hofer, E.P.4
-
20
-
-
33751502007
-
Interval arithmetic with containment sets
-
Pryce, J. D.; Corliss, G. F. Interval arithmetic with containment sets. Computing 2006, 78, 251-276.
-
(2006)
Computing
, vol.78
, pp. 251-276
-
-
Pryce, J.D.1
Corliss, G.F.2
-
24
-
-
0004147602
-
-
Ph.D. Thesis, Michigan State University, East Lansing, MI
-
Makino, K. Rigorous Analysis of Nonlinear Motion in Particle Accelerators, Ph.D. Thesis, Michigan State University, East Lansing, MI, 1998.
-
(1998)
Rigorous Analysis of Nonlinear Motion in Particle Accelerators
-
-
Makino, K.1
-
25
-
-
0345371405
-
Taylor models and other validated functional inclusion methods
-
Makino, K.; Berz, M. Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 2003, 4, 379-456.
-
(2003)
Int. J. Pure Appl. Math
, vol.4
, pp. 379-456
-
-
Makino, K.1
Berz, M.2
-
26
-
-
17644369306
-
Taylor models and floating-point arithmetic: Proof that arithmetic operations are validated in COSY
-
Revol, N.; Makino, K.; Berz, M. Taylor models and floating-point arithmetic: Proof that arithmetic operations are validated in COSY. J. Logic Algebr. Progr. 2005, 64, 135-154.
-
(2005)
J. Logic Algebr. Progr
, vol.64
, pp. 135-154
-
-
Revol, N.1
Makino, K.2
Berz, M.3
-
27
-
-
0037292825
-
Taylor forms-Use and limits
-
Neumaier, A. Taylor forms-Use and limits. Reliab. Comput. 2003, 9, 43-79.
-
(2003)
Reliab. Comput
, vol.9
, pp. 43-79
-
-
Neumaier, A.1
-
29
-
-
33645115495
-
Verified global optimization with Taylor model-based range bounders
-
Makino, K.; Berz, M. Verified global optimization with Taylor model-based range bounders. Trans. Comput. 2005, 11, 1611-1618.
-
(2005)
Trans. Comput
, vol.11
, pp. 1611-1618
-
-
Makino, K.1
Berz, M.2
-
30
-
-
0008669707
-
The Solution of Initial Value Problems Using Interval Arithmetic
-
Stichting Mathematisch Centrum, Amsterdam, The Netherlands
-
Eijgenraam, P. The Solution of Initial Value Problems Using Interval Arithmetic. Technical Report Mathematical Centre Tracts No. 144, Stichting Mathematisch Centrum, Amsterdam, The Netherlands, 1981.
-
(1981)
Technical Report Mathematical Centre Tracts No
, vol.144
-
-
Eijgenraam, P.1
|