메뉴 건너뛰기




Volumn 20, Issue 8, 2007, Pages 695-702

Rough set based approach for inducing decision trees

Author keywords

Machine learning and decision tree; Variable precision explicit region; Variable precision implicit region; Variable Precision Rough Set Model

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA STRUCTURES; LEARNING SYSTEMS; MATHEMATICAL MODELS; ROUGH SET THEORY;

EID: 35848955416     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2006.10.001     Document Type: Article
Times cited : (30)

References (19)
  • 3
    • 33744584654 scopus 로고
    • Introduction of decision trees
    • Quinlan J.R. Introduction of decision trees. Machine Learning 3 (1986) 81-106
    • (1986) Machine Learning , vol.3 , pp. 81-106
    • Quinlan, J.R.1
  • 5
    • 0031345619 scopus 로고    scopus 로고
    • J. Cheng, D. Bell, Learning bayesian networks from data: an efficient approach based on information theory, in: Proc. of the Sixth ACM International Conference on Information and Knowledge Management, 1997, pp. 325-331.
  • 6
    • 35848961885 scopus 로고    scopus 로고
    • L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and regression trees, Technical report, Wadsworth International, Monterey, CA, 1984.
  • 7
    • 35848962926 scopus 로고    scopus 로고
    • R. Agrawal, M. Mehta, J.C. Shafer, SPRINT: a scalable parallel classifier for data mining, in: Proc. of VLDB '96, 22nd Intl. Conf. on Very Large Databases, Bombay, India, 1996, pp. 544-555.
  • 11
    • 0028371883 scopus 로고
    • Rough set approach to multi-attribute decision analysis
    • Pawlak Z. Rough set approach to multi-attribute decision analysis. European Journal of Operational Research 72 3 (1994) 443-459
    • (1994) European Journal of Operational Research , vol.72 , Issue.3 , pp. 443-459
    • Pawlak, Z.1
  • 13
    • 34249966833 scopus 로고
    • An empirical comparison of pruning methods for decision-tree induction
    • Mingers J. An empirical comparison of pruning methods for decision-tree induction. Machine Learning 4 2 (1989) 319-342
    • (1989) Machine Learning , vol.4 , Issue.2 , pp. 319-342
    • Mingers, J.1
  • 14
    • 0024627518 scopus 로고
    • Inferring decision trees using the minimum description length principle
    • Quinlan J.R., and Rivest R. Inferring decision trees using the minimum description length principle. Information and Computation 80 3 (1989) 227-248
    • (1989) Information and Computation , vol.80 , Issue.3 , pp. 227-248
    • Quinlan, J.R.1    Rivest, R.2
  • 15
    • 35848949055 scopus 로고    scopus 로고
    • Z.W. Ras, M. Zemankova, Imprecise concept learning within a growing language, in: Proc. of the Sixth International Workshop on Machine learning 1989, Ithaca, New York, United States, 1989, pp. 314-319.
  • 17
    • 35848946134 scopus 로고    scopus 로고
    • M. Kryszkiewicz, Maintenance of reducts in the variable precision rough set model, in: 1995 ACM Computer Science Conference (CSS'95), 1995, pp. 355-372.
  • 18
    • 0035414934 scopus 로고    scopus 로고
    • Probabilistic decision tables in the variable precision rough set model
    • Ziarko W. Probabilistic decision tables in the variable precision rough set model. Computational Intelligence 17 3 (2001) 593-603
    • (2001) Computational Intelligence , vol.17 , Issue.3 , pp. 593-603
    • Ziarko, W.1
  • 19
    • 33746716701 scopus 로고    scopus 로고
    • Variable precision rough set and a fuzzy measure of knowledge based on Variable Precision Rough Set
    • Jian L., Da Q., and Chen W. Variable precision rough set and a fuzzy measure of knowledge based on Variable Precision Rough Set. Journal of Southeast University (English Edition) 18 4 (2002) 351-355
    • (2002) Journal of Southeast University (English Edition) , vol.18 , Issue.4 , pp. 351-355
    • Jian, L.1    Da, Q.2    Chen, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.