-
1
-
-
0033946678
-
"Topological fluid mechanics of stirring"
-
JFLSA70022-112010.1017/S0022112099007107
-
P. L. Boyland, H. Aref, and M. A. Stremler, "Topological fluid mechanics of stirring," J. Fluid Mech JFLSA70022-112010.1017/ S0022112099007107 403, 277 (2000).
-
(2000)
J. Fluid Mech.
, vol.403
, pp. 277
-
-
Boyland, P.L.1
Aref, H.2
Stremler, M.A.3
-
2
-
-
35748969507
-
-
note
-
Three rods are required for bounded or unbounded two-dimensional flow in the plane. As discussed in Ref. 14, if the flow is on a cylinder (i.e., is a singly-periodic, two-dimensional flow) or is on a torns (i.e., is a doublyperiodic, two-dimensional flow), then only two stirring rods are required.
-
-
-
-
3
-
-
84968476184
-
"On the geometry and dynamics of diffeomorphisms of surfaces"
-
ZZZZZZ0273-0979
-
W. Thurston, "On the geometry and dynamics of diffeomorphisms of surfaces," Bull., New Ser., Am. Math. Soc ZZZZZZ0273-0979 19, 417 (1988).
-
(1988)
Bull., New Ser., Am. Math. Soc.
, vol.19
, pp. 417
-
-
Thurston, W.1
-
5
-
-
0242594648
-
"Topological chaos in inviscid and viscous mixers"
-
JFLSA70022-112010.1017/S0022112003005858
-
M. D. Finn, S. M. Cox, and H. M. Byrne, "Topological chaos in inviscid and viscous mixers," J. Fluid Mech.JFLSA70022-112010.1017/ S0022112003005858 493, 345 (2003).
-
(2003)
J. Fluid Mech.
, vol.493
, pp. 345
-
-
Finn, M.D.1
Cox, S.M.2
Byrne, H.M.3
-
6
-
-
1842587988
-
"Simulation of topological chaos in laminar flows"
-
CHAOEH1054-150010.1063/1.1621092
-
A. Vikhansky, "Simulation of topological chaos in laminar flows," ChaosCHAOEH1054-150010.1063/1.1621092 14, 14 (2004).
-
(2004)
Chaos
, vol.14
, pp. 14
-
-
Vikhansky, A.1
-
7
-
-
31444441777
-
"Smart baffle placement for chaotic mixing"
-
NODYES0924-090X10.1007/s11071-006-0755-9
-
M. J. Clifford and S. M. Cox, "Smart baffle placement for chaotic mixing," Nonlinear Dyn.NODYES0924-090X10.1007/s11071-006-0755-9 43, 117 (2006).
-
(2006)
Nonlinear Dyn.
, vol.43
, pp. 117
-
-
Clifford, M.J.1
Cox, S.M.2
-
8
-
-
36148955837
-
"A mixer design for the pigtail braid"
-
(in press)FDRSEH0169-5983
-
B. J. Binder and S. M. Cox, "A mixer design for the pigtail braid," Fluid Dyn. Res. (in press)FDRSEH0169-5983.
-
Fluid Dyn. Res.
-
-
Binder, B.J.1
Cox, S.M.2
-
9
-
-
0001173010
-
"Global shadowing of pseudo-Anosov homeomorphisms"
-
ZZZZZZ0143-3857
-
M. Handel, "Global shadowing of pseudo-Anosov homeomorphisms," Ergod. Theory Dyn. Syst.ZZZZZZ0143-3857 5, 373 (1985).
-
(1985)
Ergod. Theory Dyn. Syst.
, vol.5
, pp. 373
-
-
Handel, M.1
-
10
-
-
33845667563
-
"Topology, braids and mixing in fluids"
-
PTRMAD0962-842810.1098/rsta.2006.1899
-
J.-L. Thiffeault and M. D. Finn, "Topology, braids and mixing in fluids," Philos. Trans. R. Soc. London, Ser. APTRMAD0962-842810.1098/rsta.2006.1899 364, 3251 (2006).
-
(2006)
Philos. Trans. R. Soc. London, Ser A
, vol.364
, pp. 3251
-
-
Thiffeault, J.-L.1
Finn, M.D.2
-
11
-
-
0344468066
-
"Chaotic advection in a braided pipe mixer"
-
phfle61070-663110.1063/1.1616555
-
M. D. Finn, S. M. Cox, and H. M. Byrne, "Chaotic advection in a braided pipe mixer," Phys. FluidsPHFLE61070-663110.1063/1.1616555 15, L77 (2003).
-
(2003)
Phys. Fluids
, vol.15
-
-
Finn, M.D.1
Cox, S.M.2
Byrne, H.M.3
-
12
-
-
0037437759
-
"Topological fluid mechanics of point vortex motions"
-
PDNPDT0167-278910.1016/S0167-2789(02)00692-9
-
P. Boyland, M. Stremler, and H. Aref, "Topological fluid mechanics of point vortex motions," Physica DPDNPDT0167-278910.1016/ S0167-2789(02)00692-9 175, 69 (2003).
-
(2003)
Physica D
, vol.175
, pp. 69
-
-
Boyland, P.1
Stremler, M.2
Aref, H.3
-
13
-
-
33645152009
-
"Topological mixing with ghost rods"
-
PLEEE81063-651X10.1103/PhysRevE.73.036311
-
E. Gouillart, J.-L. Thiffeault, and M. D. Finn, "Topological mixing with ghost rods," Phys. Rev. EPLEEE81063-651X10.1103/ PhysRevE.73.036311 73, 036311 (2006).
-
(2006)
Phys. Rev. E
, vol.73
, pp. 036311
-
-
Gouillart, E.1
Thiffeault, J.-L.2
Finn, M.D.3
-
14
-
-
33747769246
-
"Topological chaos in spatially periodic mixers"
-
PDNPDT0167-278910.1016/j.physd.2006.07.018
-
M. D. Finn, J.-L. Thiffeault, and E. Gouillart, "Topological chaos in spatially periodic mixers," Physica DPDNPDT0167-278910.1016/ j.physd.2006.07.018 221, 92 (2006).
-
(2006)
Physica D
, vol.221
, pp. 92
-
-
Finn, M.D.1
Thiffeault, J.-L.2
Gouillart, E.3
-
15
-
-
35748949813
-
"Topological chaos in cavities and channels"
-
BAPSA60003-0503
-
J. Chen and M. A. Stremler, "Topological chaos in cavities and channels," Bull. Am. Phys. Soc BAPSA60003-0503 51, 152 (2006).
-
(2006)
Bull. Am. Phys. Soc.
, vol.51
, pp. 152
-
-
Chen, J.1
Stremler, M.A.2
-
16
-
-
0022773947
-
"Laminar mixing and chaotic mixing in several cavity flows"
-
JFLSA70022-112010.1017/S0022112086000927
-
W. Chien, H. Rising, and J. M. Ottino, "Laminar mixing and chaotic mixing in several cavity flows," J. Fluid Mech.JFLSA70022-112010.1017/S0022112086000927 170, 355 (1986).
-
(1986)
J. Fluid Mech.
, vol.170
, pp. 355
-
-
Chien, W.1
Rising, H.2
Ottino, J.M.3
-
17
-
-
0024902053
-
"Experiments on mixing due to chaotic advection in a cavity"
-
JFLSA70022-112010.1017/S0022112089003186
-
C.-W. Leong and J. M. Ottino, "Experiments on mixing due to chaotic advection in a cavity," J. Fluid Mech.JFLSA70022-112010.1017/ S0022112089003186 209, 463 (1989).
-
(1989)
J. Fluid Mech.
, vol.209
, pp. 463
-
-
Leong, C.-W.1
Ottino, J.M.2
-
18
-
-
0038151399
-
"Analyzing mixing in periodic flows by distribution matrices: Mapping method"
-
AICEAC0001-154110.1002/aic.690470507
-
P. G. M. Kruijt, O. S. Galaktionov, P. D. Anderson, G. W. M. Peters, and H. E. H. Meijer, "Analyzing mixing in periodic flows by distribution matrices: Mapping method," AIChE J. AICEAC0001-154110.1002/aic.690470507 47, 1005 (2001).
-
(2001)
AIChE J.
, vol.47
, pp. 1005
-
-
Kruijt, P.G.M.1
Galaktionov, O.S.2
Anderson, P.D.3
Peters, G.W.M.4
Meijer, H.E.H.5
-
19
-
-
2442596887
-
"Investigation of the staggered herringbone mixer with a simple analytical model,"
-
PTRMAD0962-8428
-
A. D. Stroock and G. J. McGraw, "Investigation of the staggered herringbone mixer with a simple analytical model," Philos. Trans. R. Soc. London, Ser. A PTRMAD0962-8428 362, 971 (2004).
-
(2004)
Philos. Trans. R. Soc. London, Ser. A
, vol.362
, pp. 971
-
-
Stroock, A.D.1
McGraw, G.J.2
-
20
-
-
20444454596
-
"Theoretical investigation of electro-osmotic flows and chaotic stirring in rectangular cavities"
-
AMMODL0307-904X10.1016/j.apm.2004.10.006
-
S. Qian and H. H. Bau, "Theoretical investigation of electro-osmotic flows and chaotic stirring in rectangular cavities," Appl. Math. Model. AMMODL0307-904X10.1016/ j.apm.2004.10.006 29, 726 (2005).
-
(2005)
Appl. Math. Model.
, vol.29
, pp. 726
-
-
Qian, S.1
Bau, H.H.2
-
21
-
-
0001673628
-
"Infinite systems for a biharmonic problem in a rectangle"
-
PRLAAZ1364-5021
-
V. V. Meleshko and A. M. Gomilko, "Infinite systems for a biharmonic problem in a rectangle," Proc. R. Soc. London, Ser. A PRLAAZ1364-5021 453, 2139 (1997).
-
(1997)
Proc. R. Soc. London, Ser. A
, vol.453
, pp. 2139
-
-
Meleshko, V.V.1
Gomilko, A.M.2
-
22
-
-
1542512518
-
"Infinite systems for a biharmonic problem in a rectangle, further discussion,"
-
PRLAAZ1364-502110.1098/rspa.2003.1186
-
V. V. Meleshko and A. M. Gomilko, "Infinite systems for a biharmonic problem in a rectangle, further discussion," Proc. R. Soc. London, Ser. A PRLAAZ1364-502110.1098/rspa.2003.1186 460, 807 (2004).
-
(2004)
Proc. R. Soc. London, Ser. A
, vol.460
, pp. 807
-
-
Meleshko, V.V.1
Gomilko, A.M.2
-
23
-
-
21144481878
-
"On the estimation of topological entropy"
-
JSTPBS0022-471510.1007/BF01048189
-
S. Newhouse and T. Pignataro, "On the estimation of topological entropy," J. Stat. Phys.JSTPBS0022-471510.1007/BF01048189 72, 1331 (1993).
-
(1993)
J. Stat. Phys.
, vol.72
, pp. 1331
-
-
Newhouse, S.1
Pignataro, T.2
-
24
-
-
0001482567
-
"Topological methods in surface dynamics"
-
TIAPD90166-864110.1016/0166-8641(94)00147-2
-
P. L. Boyland, "Topological methods in surface dynamics," Topol. Appl. TIAPD90166-864110.1016/0166-8641(94)00147-2 58, 223 (1994).
-
(1994)
Topol. Appl.
, vol.58
, pp. 223
-
-
Boyland, P.L.1
-
25
-
-
35748978463
-
-
note
-
Note that the velocity gradients in Eq. (2) become infinite at discontinuities in the boundary velocity. Thus these integrals exclude an ε-neighborhood around the points x= ±a, ±c, and the value of V is determined by considering the limit ε→0.
-
-
-
|