메뉴 건너뛰기




Volumn 387, Issue 1, 2008, Pages 177-201

Generic two-phase coexistence, relaxation kinetics, and interface propagation in the quadratic contact process: Analytic studies

Author keywords

Discrete reaction diffusion equations; Generic two phase coexistence; Interface propagation; Master equations; Quadratic contact process; Truncation

Indexed keywords

ADSORPTION; DESORPTION; MATHEMATICAL MODELS; PERTURBATION TECHNIQUES;

EID: 35748971436     PISSN: 03784371     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physa.2007.09.002     Document Type: Article
Times cited : (16)

References (32)
  • 12
    • 35748958687 scopus 로고    scopus 로고
    • A.L. Toom, in: R.L. Dobrushin, Y.G. Sinai (Eds.), Multicomponent Random Systems, Marcel Dekker, New York, 1980.
  • 19
  • 21
    • 35748935816 scopus 로고    scopus 로고
    • D.M. Burley, in: C. Domb, M.S. Green (Eds.), Phase Transitions and Critical Phenomena, vol.2, Academic Press, New York, 1972.
  • 22
    • 35748945995 scopus 로고    scopus 로고
    • e=1-Q=(1-θ)/(1+θ). This result was used in Ref. [8].
  • 23
    • 35748931999 scopus 로고    scopus 로고
    • These can be reduced to four equations by further factorizing the probability for the T-shaped configuration. This produces negligible changes to the predicted behavior.
  • 25
    • 35748980842 scopus 로고    scopus 로고
    • We have redefined Q to "deemphasize" phase separation by averaging Q-values for the two phases weighting only by fractional area. Then, the simulated refined (Q, θ)-flow reveals behavior closer to the pair approximation prediction. However, configurations near the coarsening state do tend to evolve to the active or poisoned steady states along a roughly straight line trajectory (as should be expected for phase-separated states).
  • 28
    • 0004184873 scopus 로고
    • Cambridge University Press, Cambridge
    • Drazin P.G. Nonlinear Systems (1992), Cambridge University Press, Cambridge
    • (1992) Nonlinear Systems
    • Drazin, P.G.1
  • 29
    • 35748982394 scopus 로고    scopus 로고
    • Note that the iterated map takes (u, v)=(1-p, 1) into (u, v)=(1, 1-p).
  • 30
    • 35748964115 scopus 로고    scopus 로고
    • D.-J. Liu, Xiaofang Guo, D. Unruh, J.W. Evans, unpublished.
  • 31
    • 35748950380 scopus 로고    scopus 로고
    • i-1.
  • 32
    • 35748958379 scopus 로고    scopus 로고
    • i at each step).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.