메뉴 건너뛰기




Volumn 33, Issue 1, 2008, Pages 115-132

A dimensionality reduction technique for efficient time series similarity analysis

Author keywords

Data mining; Dimensionality reduction; Information retrieval; Temporal databases; Vector quantization

Indexed keywords

APPROXIMATION THEORY; CLUSTERING ALGORITHMS; DATA MINING; INFORMATION RETRIEVAL; TIME SERIES ANALYSIS; VECTOR QUANTIZATION;

EID: 35748941262     PISSN: 03064379     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.is.2007.07.002     Document Type: Article
Times cited : (59)

References (36)
  • 1
    • 9444260614 scopus 로고    scopus 로고
    • A survey of recent methods for efficient retrieval of similar time sequences
    • World Scientific
    • Hetland M.L. A survey of recent methods for efficient retrieval of similar time sequences. Data Mining in Time Series Databases (2002), World Scientific
    • (2002) Data Mining in Time Series Databases
    • Hetland, M.L.1
  • 2
    • 0040748318 scopus 로고    scopus 로고
    • E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Locally adaptive dimensionality reduction for indexing large time series databases, in: Proceedings of the ACM SIGMOD Conference on Management of Data, Santa Barbara, CA, 2001.
  • 3
    • 35748986324 scopus 로고    scopus 로고
    • Survey of Time Series, 〈http://www.cse.cuhk.edu.hk/~mzhou/timeseriesreading.htm〉.
  • 4
    • 35748929853 scopus 로고    scopus 로고
    • E. Keogh, T. Folias, The UCR time series data mining archive, 2002.
  • 5
    • 35748965203 scopus 로고    scopus 로고
    • R. Agrawal, C. Faloutsos, A. Swami, Efficient similarity search in sequence databases, in: Proceedings of the Fourth International Conference on Foundations of Data Organization and Algorithms (FODO) Conference, Evanston, IL, 1993.
  • 6
    • 35748971350 scopus 로고    scopus 로고
    • R. Agrawal, K.I. Lin, H.S. Sawhney, K. Shim, Fast similarity search in the presence of noise, scaling, and translation in time-series databases, in: Proceedings of the 21st International Conference on Very Large Databases, Zurich, Switzerland, 1995.
  • 7
    • 0037868029 scopus 로고    scopus 로고
    • R.A. Baeza-Yates, G. Gonnet, A fast algorithm on average for all-against-all sequence matching, in: Proceedings of the String Processing and Information Retrieval Symposium, 1999.
  • 8
    • 0031346492 scopus 로고    scopus 로고
    • C. Faloutsos, H.V. Jagadish, A. Mendelzon, T. Milo, A signature technique for similarity-based queries, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, Positano-salerno, Italy, 1997.
  • 10
    • 0032637272 scopus 로고    scopus 로고
    • Y. Huhtala, J. Karkkainen, H. Toivonen, Mining for similarities in aligned time series using wavelets, in: Data Mining and Knowledge Discovery: Theory, Tools, and Technology, SPIE Proceeding Series, Vol. 3695, Orlando, FL, 1999.
  • 11
    • 85040241330 scopus 로고    scopus 로고
    • Dimensionality reduction for fast similarity search in large time series databases
    • Keogh E., Chakrabarti K., Pazzani M., and Mehrotra S. Dimensionality reduction for fast similarity search in large time series databases. J. Knowl. Inform. Syst. 3 3 (2000) 263-286
    • (2000) J. Knowl. Inform. Syst. , vol.3 , Issue.3 , pp. 263-286
    • Keogh, E.1    Chakrabarti, K.2    Pazzani, M.3    Mehrotra, S.4
  • 12
    • 35748954815 scopus 로고    scopus 로고
    • E. Keogh, M. Pazzani, An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback, in: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, NY, 1998.
  • 13
    • 35748962521 scopus 로고    scopus 로고
    • J. Lin, E. Keogh, P. Patel, S. Lonardi, Finding motifs in time series, in: Proceedings of the Second Workshop on Temporal Data Mining, at the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, 2002.
  • 14
    • 0033871047 scopus 로고    scopus 로고
    • C.-S. Perng, H. Wang, S.R. Zhang, D.S. Parker, Landmarks: a new model for similarity-based pattern querying in time series databases, in: Proceedings of the International Conference on Data Engineering, San Diego, CA, 2000.
  • 15
    • 0008693810 scopus 로고    scopus 로고
    • p norms, in: Proceedings of International Conference on Very Large Data Bases, Cairo, Egypt, 2000.
  • 16
    • 0021615874 scopus 로고    scopus 로고
    • A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of the ACM SIGMOD, Boston, MA, 1984.
  • 18
    • 0033878207 scopus 로고    scopus 로고
    • S. Park, W.W. Chu, J. Yoon, C. Hsu, Efficient search for similar subsequences of different lengths in sequence databases, in: Proceedings of the International Conference on Data Engineering, San Diego, CA, 2000.
  • 19
    • 33745781710 scopus 로고    scopus 로고
    • J. Lin, E. Keogh, S. Lonardi, B. Chiu, A symbolic representation of time series, with implications for streaming algorithms, in: Proceedings of the Eighth ACM workshop on Research Issues in Data Mining and Knowledge Discovery, San Diego, CA, 2003.
  • 20
    • 18744416014 scopus 로고    scopus 로고
    • V. Megalooikonomou, G. Li, Q. Wang, A Dimensionality Reduction technique for efficient similarity analysis of time series databases, in: Proceedings of the 13th ACM Conference on Information and Knowledge Management, Washington, DC, 2004.
  • 22
    • 0033717742 scopus 로고    scopus 로고
    • F. Linaker, L. Niklasson, Time series segmentation using an adaptive resource allocating vector quantization network based on change detection, in: Proceedings of the International Joint Conference on Neural Networks, Como, Italy, 2000.
  • 23
    • 27544460186 scopus 로고    scopus 로고
    • Vector quantization: a weighted version for time-series forecasting
    • Lendasse A., Francois D., Wertz V., and Verleysen M. Vector quantization: a weighted version for time-series forecasting. Future Gener. Comput. Syst. 21 7 (2005) 1056-1067
    • (2005) Future Gener. Comput. Syst. , vol.21 , Issue.7 , pp. 1056-1067
    • Lendasse, A.1    Francois, D.2    Wertz, V.3    Verleysen, M.4
  • 24
    • 0018918171 scopus 로고
    • An algorithm for vector quantizer design
    • Linde S., Buzo A., and Gray A. An algorithm for vector quantizer design. IEEE Trans. Commun. 28 (1980) 84-95
    • (1980) IEEE Trans. Commun. , vol.28 , pp. 84-95
    • Linde, S.1    Buzo, A.2    Gray, A.3
  • 25
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Lloyd S.P. Least squares quantization in PCM. IEEE Trans. Inform. Theory IT 28 (1982) 127-135
    • (1982) IEEE Trans. Inform. Theory IT , Issue.28 , pp. 127-135
    • Lloyd, S.P.1
  • 26
    • 35748971668 scopus 로고    scopus 로고
    • UCI KDD Archive, in 〈http://kdd.ics.uci.edu〉.
  • 27
    • 0030645272 scopus 로고    scopus 로고
    • J.E. Fowler, Adaptive vector quantization-part I: a unifying structure, in: Proceedings of the IEEE Data Compression Conference, Snowbird, UT, 1997.
  • 28
    • 0036211177 scopus 로고    scopus 로고
    • M. Vlachos, G. Kollios, G. Gunopulos, Discovering similar multidimensional trajectories, in: Proceedings of the 18th International Conference on Data Engineering, San Jose, CA, 2002.
  • 29
    • 45549117987 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • Salton G., and Buckley C. Term-weighting approaches in automatic text retrieval. Inform Process Manage 24 5 (1988) 513-523
    • (1988) Inform Process Manage , vol.24 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 30
    • 35748950318 scopus 로고    scopus 로고
    • D.Q. Goldin, P.C. Kanellakis, On similarity queries for time-series data: constraint specification and implementation, in: Proceedings of the First International Conference on Principles and Practice of Constraint Programming, Cassis, France, 1995.
  • 31
    • 35748937247 scopus 로고    scopus 로고
    • R.J. Alcock, Y. Manolopoulos, Time-series similarity queries employing a feature-based approach, in: Proceedings of the Seventh Hellenic Conference on Informatics, Ioannina, Greece, 1999.
  • 32
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
    • Andrzejak R.G., Lehnertz K., Rieke C., Mormann F., David P., and Elger C.E. Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64 (2001) 061907
    • (2001) Phys. Rev. E , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Rieke, C.3    Mormann, F.4    David, P.5    Elger, C.E.6
  • 34
    • 0034593048 scopus 로고    scopus 로고
    • M. Gavrilov, D. Anguelov, P. Indyk, R. Motwani, Mining the stock market: which measure is best?, in: Proceedings of the International Conference on Knowledge Discovery and Data Mining, Boston, MA, 2000.
  • 35
    • 35748955123 scopus 로고    scopus 로고
    • Regional Accounts Data, Bureau of Economic Analysis, 〈http://www.bea.gov/bea/regional/spi〉.
  • 36
    • 28444432990 scopus 로고    scopus 로고
    • V. Megalooikonomou, Q. Wang, G. Li, C. Faloutsos, A Multiresolution symbolic representation of time series, in: Proceedings of the 21st IEEE International Conference on Data Engineering (ICDE05), Tokyo, Japan, 2005.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.