메뉴 건너뛰기




Volumn 52, Issue 3, 2008, Pages 1387-1398

Testing the significance of cell-cycle patterns in time-course microarray data using nonparametric quadratic inference functions

Author keywords

Cell cycle microarray data; Chi squared test; Gene grouping; Quadratic inference function; Varying coefficient model

Indexed keywords

CELLS; COMPUTER SIMULATION; GENETIC ENGINEERING; MATHEMATICAL MODELS; MICROARRAYS; STATISTICAL METHODS;

EID: 35548991027     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2007.03.018     Document Type: Article
Times cited : (5)

References (22)
  • 1
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y., and Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. B 57 (1995) 289-300
    • (1995) J. Roy. Statist. Soc. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 5
    • 0000414660 scopus 로고
    • Large sample properties of generalized method of moments estimators
    • Hansen L.P. Large sample properties of generalized method of moments estimators. Econometrica 50 (1982) 1029-1054
    • (1982) Econometrica , vol.50 , pp. 1029-1054
    • Hansen, L.P.1
  • 6
    • 0032729435 scopus 로고    scopus 로고
    • Exploring expression data: identification and analysis of coexpressed genes
    • Heyer L.J., Kruglyak S., and Yooseph S. Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 9 (1999) 1106-1115
    • (1999) Genome Res. , vol.9 , pp. 1106-1115
    • Heyer, L.J.1    Kruglyak, S.2    Yooseph, S.3
  • 7
    • 0011799801 scopus 로고    scopus 로고
    • Varying-coefficient models and basis function approximations for the analysis of repeated measurements
    • Huang J.Z., Wu C.O., and Zhou L. Varying-coefficient models and basis function approximations for the analysis of repeated measurements. Biometrika 89 (2002) 111-128
    • (2002) Biometrika , vol.89 , pp. 111-128
    • Huang, J.Z.1    Wu, C.O.2    Zhou, L.3
  • 8
    • 0036012357 scopus 로고    scopus 로고
    • A simple statistical model for depicting the CDC15-synchronized yeast cell-cycle regulated gene expression data
    • Li K.C., Yan M., and Yuan S. A simple statistical model for depicting the CDC15-synchronized yeast cell-cycle regulated gene expression data. Statist. Sinica 12 (2002) 141-158
    • (2002) Statist. Sinica , vol.12 , pp. 141-158
    • Li, K.C.1    Yan, M.2    Yuan, S.3
  • 9
    • 77649173768 scopus 로고
    • Longitudinal data analysis using general linear models
    • Liang K.Y., and Zeger S.L. Longitudinal data analysis using general linear models. Biometrika 73 (1986) 13-22
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 10
    • 1342288029 scopus 로고    scopus 로고
    • Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data
    • Luan Y., and Li H. Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data. Bioinformatics 20 (2004) 332-339
    • (2004) Bioinformatics , vol.20 , pp. 332-339
    • Luan, Y.1    Li, H.2
  • 12
    • 33745257048 scopus 로고    scopus 로고
    • The clustering of regression models methods with application in gene expression data
    • Qin L.-X., and Self S. The clustering of regression models methods with application in gene expression data. Biometrics 62 (2006) 526-533
    • (2006) Biometrics , vol.62 , pp. 526-533
    • Qin, L.-X.1    Self, S.2
  • 13
    • 33745271377 scopus 로고    scopus 로고
    • Nonparametric modeling and inference function for longitudinal data
    • Qu A., and Li R. Nonparametric modeling and inference function for longitudinal data. Biometrics 62 (2006) 379-391
    • (2006) Biometrics , vol.62 , pp. 379-391
    • Qu, A.1    Li, R.2
  • 14
    • 0141754343 scopus 로고    scopus 로고
    • Improving generalised estimating equations using quadratic inference functions
    • Qu A., Lindsay B., and Li B. Improving generalised estimating equations using quadratic inference functions. Biometrika 87 (2000) 823-836
    • (2000) Biometrika , vol.87 , pp. 823-836
    • Qu, A.1    Lindsay, B.2    Li, B.3
  • 15
    • 35548947330 scopus 로고    scopus 로고
    • Ruppert, D., Carroll, R.J., 1997. Penalized regression splines. Technical Report TR1249, Department of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, USA.
  • 20
    • 0034954897 scopus 로고    scopus 로고
    • Analysis of microarray data
    • Xia X., and Xie Z. Analysis of microarray data. Bioinformatics 17 (2001) 569-570
    • (2001) Bioinformatics , vol.17 , pp. 569-570
    • Xia, X.1    Xie, Z.2
  • 21
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung K., Fraley C., Murua A., Raftery A., and Ruzzo W. Model-based clustering and data transformations for gene expression data. Bioinformatics 17 (2001) 977-987
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.1    Fraley, C.2    Murua, A.3    Raftery, A.4    Ruzzo, W.5
  • 22
    • 0035826942 scopus 로고    scopus 로고
    • Statistical modeling of large microarray data sets to identify stimulus-response profiles
    • Zhao L.P., Prentice R., and Breeden L. Statistical modeling of large microarray data sets to identify stimulus-response profiles. Proc. Natl. Acad. Sci. USA 98 (2001) 5631-5636
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 5631-5636
    • Zhao, L.P.1    Prentice, R.2    Breeden, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.