메뉴 건너뛰기




Volumn 26, Issue 3, 2007, Pages 177-189

Convergence analysis of batch gradient algorithm for three classes of Sigma-Pi neural networks

Author keywords

Batch gradient algorithm; Convergence; Monotonicity; Sigma Pi Sigma neural networks; Sigma Pi Sigma Pi neural networks; Sigma Sigma Pi neural networks

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; ERROR ANALYSIS; ITERATIVE METHODS; LEARNING SYSTEMS;

EID: 35548986202     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-007-9050-0     Document Type: Article
Times cited : (10)

References (14)
  • 2
    • 35549005600 scopus 로고
    • The realization of arbitrary Boolean function by two layer higher-order neural network
    • Li JY and Yu YL (1995). The realization of arbitrary Boolean function by two layer higher-order neural network. J South China Univ Techn 23: 111-116
    • (1995) J South China Univ Techn , vol.23 , pp. 111-116
    • Li, J.Y.1    Yu, Y.L.2
  • 3
    • 10244251596 scopus 로고    scopus 로고
    • Note on interpolation on the hypercube by means of sigma-pi neural networks
    • Lenze B (2004). Note on interpolation on the hypercube by means of sigma-pi neural networks. Neurocomputing 61: 471-478
    • (2004) Neurocomputing , vol.61 , pp. 471-478
    • Lenze, B.1
  • 5
    • 0029359844 scopus 로고
    • Analysis of adaptive step size SA algorithms for parameter rates
    • Kushner HJ and Yang J (1995). Analysis of adaptive step size SA algorithms for parameter rates. IEEE Transac Automat Control 40: 1403-1410
    • (1995) IEEE Transac Automat Control , vol.40 , pp. 1403-1410
    • Kushner, H.J.1    Yang, J.2
  • 6
    • 33847124294 scopus 로고    scopus 로고
    • Convergence of gradient algorithm for feedforward neural network training
    • Shao HM, Wu W, Li F and Zheng GF (2004). Convergence of gradient algorithm for feedforward neural network training. Proceed Int Symposium Comput Inform 2: 627-631
    • (2004) Proceed Int Symposium Comput Inform , vol.2 , pp. 627-631
    • Shao, H.M.1    Wu, W.2    Li, F.3    Zheng, G.F.4
  • 7
    • 0141849409 scopus 로고    scopus 로고
    • Training multilayer perceptrons via minimization of sum of ridge functions
    • Wu W, Feng G and Li X (2002). Training multilayer perceptrons via minimization of sum of ridge functions. Adv Computat Math 17: 331-347
    • (2002) Adv Computat Math , vol.17 , pp. 331-347
    • Wu, W.1    Feng, G.2    Li, X.3
  • 8
    • 0036131765 scopus 로고    scopus 로고
    • Successive approximation training algorithm for feedforward neural networks
    • Liang YC (2002). Successive approximation training algorithm for feedforward neural networks. Neurocomputing 42: 311-322
    • (2002) Neurocomputing , vol.42 , pp. 311-322
    • Liang, Y.C.1
  • 9
    • 19344362900 scopus 로고    scopus 로고
    • Deterministic convergence of an online gradient method for BP neural networks
    • Wu W, Feng G, Li Z and Xu Y (2005). Deterministic convergence of an online gradient method for BP neural networks. IEEE Transac Neural Networks 16: 533-540
    • (2005) IEEE Transac Neural Networks , vol.16 , pp. 533-540
    • Wu, W.1    Feng, G.2    Li, Z.3    Xu, Y.4
  • 10
    • 0000221271 scopus 로고
    • Product units: A computationally powerful and biologically pausible extension to backpropagation networks
    • Durbin R and Rumelhart D (1989). Product units: a computationally powerful and biologically pausible extension to backpropagation networks. Neural Comput 1: 133-142
    • (1989) Neural Comput , vol.1 , pp. 133-142
    • Durbin, R.1    Rumelhart, D.2
  • 11
    • 0028590246 scopus 로고
    • How to make sigma-pi neural networks perform perfectly on regular training sets
    • Lenze B (1994). How to make sigma-pi neural networks perform perfectly on regular training sets. Neural Networks 7: 1285-1293
    • (1994) Neural Networks , vol.7 , pp. 1285-1293
    • Lenze, B.1
  • 12
    • 0029343601 scopus 로고
    • A Framework for improved training of sigma-pi networks
    • Heywood M and Noakes P (1995). A Framework for improved training of sigma-pi networks. IEEE Transac Neural Networks 6: 893-903
    • (1995) IEEE Transac Neural Networks , vol.6 , pp. 893-903
    • Heywood, M.1    Noakes, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.