-
1
-
-
84893574327
-
Improved approximation algorithms for Maximum Cut and Satisfiability problems using semidefinite programming
-
Goemans M X, Williamson D P. Improved approximation algorithms for Maximum Cut and Satisfiability problems using semidefinite programming. J ACM, 42: 1115-1145 (1995)
-
(1995)
J ACM
, vol.42
, pp. 1115-1145
-
-
Goemans, M.X.1
Williamson, D.P.2
-
2
-
-
10844234989
-
Constructing worst case instances for semidefinite programming based approximation algorithms
-
Alon N, Sudakov B, Zwick, U. Constructing worst case instances for semidefinite programming based approximation algorithms. SIAM J Discrete Math, 15: 58-72 (2002)
-
(2002)
SIAM J Discrete Math
, vol.15
, pp. 58-72
-
-
Alon, N.1
Sudakov, B.2
Zwick, U.3
-
3
-
-
0032631766
-
Outward rotations: A tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems
-
Zwick U. Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 1999, 679-687
-
(1999)
Proceedings of the 31st Annual ACM Symposium on Theory of Computing
, pp. 679-687
-
-
Zwick, U.1
-
4
-
-
0034380791
-
Bipartite subgraphs and the smallest eigenvalue
-
Alon N, Sudakov B. Bipartite subgraphs and the smallest eigenvalue. Combin, Probab and Comput, 9: 1-12 (2000)
-
(2000)
Combin, Probab and Comput
, vol.9
, pp. 1-12
-
-
Alon, N.1
Sudakov, B.2
-
5
-
-
0036099092
-
On the optimality of the random hyperplane rounding technique for MAX CUT
-
3
-
Feige U, Schechtman G. On the optimality of the random hyperplane rounding technique for MAX CUT. Random Structures and Algorithms, 20(3): 403-440 (2002)
-
(2002)
Random Structures and Algorithms
, vol.20
, pp. 403-440
-
-
Feige, U.1
Schechtman, G.2
-
6
-
-
0343168152
-
How good is the Goemans-Williamson MAX CUT algorithm?
-
Karloff H. How good is the Goemans-Williamson MAX CUT algorithm? SIAM J Comput, 29: 336-350 (1999)
-
(1999)
SIAM J Comput
, vol.29
, pp. 336-350
-
-
Karloff, H.1
-
7
-
-
17744388630
-
Optimal inapproximability results for MAX-CUT and other two-variable CSPs?
-
Khot S, Kindler G, Mossel E, O'Donnell R. Optimal inapproximability results for MAX-CUT and other two-variable CSPs? In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004, 146-154
-
(2004)
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science
, pp. 146-154
-
-
Khot, S.1
Kindler, G.2
Mossel, E.3
O'Donnell, R.4
-
9
-
-
0005325563
-
Semidefinite relaxation, multivariate normal distributions, and other statistics
-
Du, D-Z, Pardalos P M, eds. Kluwer Academic Publishers
-
Bertsimas D, Ye Y. Semidefinite relaxation, multivariate normal distributions, and other statistics. In: Du, D-Z, Pardalos P M, eds. Handbook of Combinatorial Optimization 3. Kluwer Academic Publishers, 1998, 1-19
-
(1998)
Handbook of Combinatorial Optimization
, vol.3
, pp. 1-19
-
-
Bertsimas, D.1
Ye, Y.2
-
10
-
-
0000457427
-
Semidefinite programming in combinatorial optimization
-
Goemans M X. Semidefinite programming in combinatorial optimization. Math Programming, 79: 143-161 (1997)
-
(1997)
Math Programming
, vol.79
, pp. 143-161
-
-
Goemans, M.X.1
-
11
-
-
0005369530
-
An improved rounding method and semidefinite programming relaxation for graph partition
-
Han Q, Ye Y, Zhang J. An improved rounding method and semidefinite programming relaxation for graph partition. Math Programming, 92: 509-535 (2002)
-
(2002)
Math Programming
, vol.92
, pp. 509-535
-
-
Han, Q.1
Ye, Y.2
Zhang, J.3
-
12
-
-
0005740806
-
Semidefinite programming for combinatorial optimization
-
Helmberg C. Semidefinite programming for combinatorial optimization. ZIB-Report 00-34, 2000
-
(2000)
ZIB-Report
, Issue.34
-
-
Helmberg, C.1
-
14
-
-
23444453795
-
Semidefinite programming and combinatorial optimization
-
Universität Klagenfurt, Institut für Mathematik Austria
-
Rendl F. Semidefinite programming and combinatorial optimization. Technical Report. Austria: Universität Klagenfurt, Institut für Mathematik, 1998
-
(1998)
Technical Report
-
-
Rendl, F.1
-
15
-
-
0347316725
-
Approximating the 2-catalog segmentation problem using semidefinite programming relaxation
-
Xu D, Ye Y, Zhang J. Approximating the 2-catalog segmentation problem using semidefinite programming relaxation. Optim Method and Softw, 18: 705-719 (2003)
-
(2003)
Optim Method and Softw
, vol.18
, pp. 705-719
-
-
Xu, D.1
Ye, Y.2
Zhang, J.3
-
16
-
-
0000467513
-
On the maximization of quadratic form over intersection of ellipsoids with common center
-
Nemirovski A, Roos C, Terlaky T. On the maximization of quadratic form over intersection of ellipsoids with common center. Math Programming, 86: 463-474 (1999)
-
(1999)
Math Programming
, vol.86
, pp. 463-474
-
-
Nemirovski, A.1
Roos, C.2
Terlaky, T.3
-
17
-
-
0031681870
-
Semidefinite relaxation and nonconvex quadratic optimization
-
Nesterov Yu. Semidefinite relaxation and nonconvex quadratic optimization. Optim Methods and Softw, 9: 141-160 (1998)
-
(1998)
Optim Methods and Softw
, vol.9
, pp. 141-160
-
-
Nesterov, Yu.1
-
18
-
-
0012619821
-
Global quadratic optimization via conic relaxation
-
Louvain-la-Neuve Belgium
-
Nesterov Yu. Global quadratic optimization via conic relaxation. CORE Discussion Paper. Belgium: Louvain-la-Neuve, 1998
-
(1998)
CORE Discussion Paper
-
-
Nesterov, Yu.1
-
19
-
-
1542351108
-
Further Results approximating nonconvex quadratic optimization by semidefinite programming relaxation
-
Tseng P. Further Results approximating nonconvex quadratic optimization by semidefinite programming relaxation. SIAM J Optim, 2003, 14: 268-283 (2003)
-
(2003)
SIAM J Optim, 2003
, vol.14
, pp. 268-283
-
-
Tseng, P.1
-
20
-
-
0000549997
-
Approximating quadratic programming with bound and quadratic constraints
-
Ye Y. Approximating quadratic programming with bound and quadratic constraints. Math Programming, 84: 219-226 (1999)
-
(1999)
Math Programming
, vol.84
, pp. 219-226
-
-
Ye, Y.1
-
21
-
-
0038485120
-
Approximating global quadratic optimization with convex quadratic constraints
-
Ye Y. Approximating global quadratic optimization with convex quadratic constraints. J Global Optim, 15: 1-17 (1999)
-
(1999)
J Global Optim
, vol.15
, pp. 1-17
-
-
Ye, Y.1
-
22
-
-
0038029207
-
Quadratic maximization and semidefinite relaxation
-
Zhang S. Quadratic maximization and semidefinite relaxation. Math Programming, 87: 453-465 (2000)
-
(2000)
Math Programming
, vol.87
, pp. 453-465
-
-
Zhang, S.1
-
23
-
-
0038386380
-
On cones of nonnegative quadratic functions
-
Sturm J F, Zhang S. On cones of nonnegative quadratic functions. Math Oper Res, 28: 246-267 (2003)
-
(2003)
Math Oper Res
, vol.28
, pp. 246-267
-
-
Sturm, J.F.1
Zhang, S.2
-
24
-
-
1542380911
-
New results on quadratic minimization
-
Ye Y, Zhang S. New results on quadratic minimization. SIAM J Optim, 14: 245-267 (2003)
-
(2003)
SIAM J Optim
, vol.14
, pp. 245-267
-
-
Ye, Y.1
Zhang, S.2
-
25
-
-
35448974354
-
Exact solutions of some nonconvex quadartic optimization problems via SDP and SOCP relaxations
-
Department of Mathematical and Information Sciences, The Tokyo Institute of Technology Todyo
-
Kim S, Kojima M. Exact solutions of some nonconvex quadartic optimization problems via SDP and SOCP relaxations. Working Papepr. Todyo: Department of Mathematical and Information Sciences, The Tokyo Institute of Technology, 2001
-
(2001)
Working Papepr
-
-
Kim, S.1
Kojima, M.2
-
27
-
-
0036591097
-
Improved approximation of max-cut on graphs of bounded degree
-
Feige U, Karpinski M, Langberg M. Improved approximation of max-cut on graphs of bounded degree. J Algorithms, 43: 201-219 (2002)
-
(2002)
J Algorithms
, vol.43
, pp. 201-219
-
-
Feige, U.1
Karpinski, M.2
Langberg, M.3
|