메뉴 건너뛰기




Volumn 52, Issue 8, 2004, Pages 2286-2297

Iterative learning algorithms for linear Gaussian observation models

Author keywords

[No Author keywords available]

Indexed keywords

INTEGRATION; ITERATIVE METHODS; LEARNING SYSTEMS; MATHEMATICAL MODELS; OPTIMIZATION; PARAMETER ESTIMATION; SIGNAL PROCESSING; SPURIOUS SIGNAL NOISE; STATISTICAL METHODS; WAVELET TRANSFORMS;

EID: 3543111425     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2004.830984     Document Type: Article
Times cited : (14)

References (41)
  • 3
    • 0035369669 scopus 로고    scopus 로고
    • Edge-directed prediction for lossless compression of natural images
    • June
    • X. Li and M. Orchard, "Edge-directed prediction for lossless compression of natural images," IEEE Trans. Image Processing, Vol. 10, pp. 813-817, June 2001.
    • (2001) IEEE Trans. Image Processing , vol.10 , pp. 813-817
    • Li, X.1    Orchard, M.2
  • 4
    • 0034997740 scopus 로고    scopus 로고
    • Lego - an object oriented image modeling framework
    • Snowbird, UT, Mar
    • Lego - an object oriented image modeling framework," in Proc. IEEE Data Compression Conf., Snowbird, UT, Mar. 2001, p. 504.
    • (2001) Proc. IEEE Data Compression Conf. , pp. 504
    • Meyer, B.1    Tischer, P.2
  • 5
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. C. Mackay, "Bayesian interpolation," Neural Comput., vol. 4, no. 3, pp. 415-447, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • Mackay, D.J.C.1
  • 6
    • 0030385388 scopus 로고    scopus 로고
    • Regularization functions and estimators
    • Sept
    • M. Nikolova, "Regularization functions and estimators," in Proc. IEEE Int. Conf. Image Processing, vol. 2, Sept. 1996, pp. 457-460.
    • (1996) Proc. IEEE Int. Conf. Image Processing , vol.2 , pp. 457-460
    • Nikolova, M.1
  • 7
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Sept
    • J. Q. Fan and R. Z. Li, "Variable selection via nonconcave penalized likelihood and its oracle properties," J. Amer. Statist. Assoc., vol. 96, pp. 939-955, Sept. 2001.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 939-955
    • Fan, J.Q.1    Li, R.Z.2
  • 8
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: The bridge versus the LASSO
    • W. J. Fu, "Penalized regressions: The bridge versus the LASSO," J. Comput. Graphical Statist., vol. 7, pp. 397-416, 1998.
    • (1998) J. Comput. Graphical Statist. , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 9
    • 84947672901 scopus 로고
    • Digital image processing: Toward Bayesian image analysis
    • Feb
    • J. E. Besag, "Digital image processing: toward Bayesian image analysis," J. Applied Statist., vol. 16, pp. 395-407, Feb. 1989.
    • (1989) J. Applied Statist. , vol.16 , pp. 395-407
    • Besag, J.E.1
  • 10
    • 0001287271 scopus 로고
    • Regression shrinkage and selection via lasso
    • Sept. ser. B
    • R. Tibshirani, "Regression shrinkage and selection via lasso," J. R. Statist. Soc., ser. B, vol. 57, pp. 257-288, Sept. 1995.
    • (1995) J. R. Statist. Soc. , vol.57 , pp. 257-288
    • Tibshirani, R.1
  • 12
    • 0142176890 scopus 로고    scopus 로고
    • Local strong homogeneity of a regularized estimator
    • M. Nikolova, "Local strong homogeneity of a regularized estimator," SIAM J. Applied Math., vol. 61, pp. 633-658, 2000.
    • (2000) SIAM J. Applied Math. , vol.61 , pp. 633-658
    • Nikolova, M.1
  • 13
    • 0142200827 scopus 로고    scopus 로고
    • An EM algorithm for wavelet-based image restoration
    • Aug
    • M. A. T. Figueiredo and R. B. Nowak, "An EM algorithm for wavelet-based image restoration," IEEE Trans. Image Processing, vol. 12, pp. 906-916, Aug. 2003.
    • (2003) IEEE Trans. Image Processing , vol.12 , pp. 906-916
    • Figueiredo, M.A.T.1    Nowak, R.B.2
  • 14
  • 15
    • 0000446730 scopus 로고    scopus 로고
    • Bayesian denoising of visual images in the wavelet domain
    • New York: Springer-Verlag, Lecture Notes in Statistics
    • E. P. Simoncelli, "Bayesian denoising of visual images in the wavelet domain," in Bayesian Inference in Wavelet Based Models. New York: Springer-Verlag, 1999, vol. 141, Lecture Notes in Statistics, pp. 291-308.
    • (1999) Bayesian Inference in Wavelet Based Models , vol.141 , pp. 291-308
    • Simoncelli, E.P.1
  • 16
    • 0032606945 scopus 로고    scopus 로고
    • Probabilistic framework for the adaptation and comparison of image codes
    • July
    • M. S. Lewicki and B. A. Olshausen, "Probabilistic framework for the adaptation and comparison of image codes," J. Opt. Soc. Amer. A: Opt., Image Sci., Vision, vol. 16, pp. 1587-1601, July 1999.
    • (1999) J. Opt. Soc. Amer. A: Opt., Image Sci., Vision , vol.16 , pp. 1587-1601
    • Lewicki, M.S.1    Olshausen, B.A.2
  • 17
    • 0032662774 scopus 로고    scopus 로고
    • Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors
    • Apr
    • P. Moulin and J. Liu, "Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors," IEEE Trans. Inform. Theory, vol. 45, pp. 909-919, Apr. 1999.
    • (1999) IEEE Trans. Inform. Theory , vol.45 , pp. 909-919
    • Moulin, P.1    Liu, J.2
  • 19
    • 0034258869 scopus 로고    scopus 로고
    • Adaptive wavelet thresholding for image denoising and compression
    • Sept
    • S. G. Chang, B. Yu, and M. Vetterli, "Adaptive wavelet thresholding for image denoising and compression," IEEE Trans. Image Processing, vol. 9, pp. 1532-1546, Sept. 2000.
    • (2000) IEEE Trans. Image Processing , vol.9 , pp. 1532-1546
    • Chang, S.G.1    Yu, B.2    Vetterli, M.3
  • 20
    • 84898938962 scopus 로고    scopus 로고
    • Learning sparse codes with a mixture-of-Gaussians prior
    • Cambridge, MA: MIT Press
    • B. A. Olshausen and K. J. Millman, "Learning sparse codes with a mixture-of-Gaussians prior," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002, vol. 12, pp. 841-847.
    • (2002) Advances in Neural Information Processing Systems , vol.12 , pp. 841-847
    • Olshausen, B.A.1    Millman, K.J.2
  • 21
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • P. M. Williams, "Bayesian regularization and pruning using a Laplace prior," Neural Comput., vol. 7, no. 1, pp. 117-143, 1995.
    • (1995) Neural Comput. , vol.7 , Issue.1 , pp. 117-143
    • Williams, P.M.1
  • 22
    • 0442312210 scopus 로고    scopus 로고
    • Regularization of wavelet approximations
    • Sept
    • A. Antoniadis and J. Q. Fan, "Regularization of wavelet approximations," J. Amer. Statist. Assoc., vol. 96, pp. 939-955, Sept. 2001.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 939-955
    • Antoniadis, A.1    Fan, J.Q.2
  • 24
    • 3543083498 scopus 로고    scopus 로고
    • Discussion
    • Sept
    • P. Moulin, "Discussion," J. Amer. Statist. Assoc., vol. 96, pp. 959-960, Sept. 2001.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 959-960
    • Moulin, P.1
  • 25
    • 0026898364 scopus 로고
    • Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation
    • July
    • N. P. Galasanos and A. K. Katsaggelos, "Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation," IEEE Trans. Image Processing, vol. 1, pp. 322-336, July 1992.
    • (1992) IEEE Trans. Image Processing , vol.1 , pp. 322-336
    • Galasanos, N.P.1    Katsaggelos, A.K.2
  • 26
    • 0029343101 scopus 로고
    • On some Bayesian/regularization methods for image restoration
    • July
    • G. Archer and D. M. Titterington, "On some Bayesian/regularization methods for image restoration," IEEE Trans. Image Processing, vol. 4, pp. 989-995, July 1995.
    • (1995) IEEE Trans. Image Processing , vol.4 , pp. 989-995
    • Archer, G.1    Titterington, D.M.2
  • 27
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • D. J. C. MacKay, "Comparison of approximate methods for handling hyperparameters," Neural Comput., vol. 11, pp. 1035-1068, 1999.
    • (1999) Neural Comput. , vol.11 , pp. 1035-1068
    • MacKay, D.J.C.1
  • 28
    • 0003958737 scopus 로고
    • Ph.D. dissertation, Dept. Statist., Stanford Univ., Stanford, CA
    • S. S. Chen, "Basis Pursuit," Ph.D. dissertation, Dept. Statist., Stanford Univ., Stanford, CA, 1995.
    • (1995) Basis Pursuit
    • Chen, S.S.1
  • 29
    • 0004123838 scopus 로고    scopus 로고
    • Least absolute shrinkage is equivalent to quadratic penalization
    • Sweden, Sept
    • Y. Grandvalet, "Least absolute shrinkage is equivalent to quadratic penalization," in Proc. Int. Conf. Artificial Neural Networks, Sweden, Sept. 1998, pp. 201-206.
    • (1998) Proc. Int. Conf. Artificial Neural Networks , pp. 201-206
    • Grandvalet, Y.1
  • 30
    • 0028698662 scopus 로고
    • Bayesian nonlinear modeling for the energy prediction competition
    • D. J. C. MacKay, "Bayesian nonlinear modeling for the energy prediction competition," ASHRAE Trans., vol. 100, pp. 1053-1062, 1994.
    • (1994) ASHRAE Trans. , vol.100 , pp. 1053-1062
    • MacKay, D.J.C.1
  • 31
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a spare code for natural images
    • B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a spare code for natural images," Nature, vol. 381, pp. 607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 32
    • 0345565831 scopus 로고    scopus 로고
    • Fast GEM wavelet-based deconvolution algorithm
    • Sept
    • J. Dias, "Fast GEM wavelet-based deconvolution algorithm," in Proc. IEEE Int. Conf. Image Processing, vol. 2, Sept. 2003, pp. 961-964.
    • (2003) Proc. IEEE Int. Conf. Image Processing , vol.2 , pp. 961-964
    • Dias, J.1
  • 34
    • 0036871107 scopus 로고    scopus 로고
    • An adaptive level set method for nondifferentiable constrained image recovery
    • Nov
    • P. Combettes and J. Lou, "An adaptive level set method for nondifferentiable constrained image recovery," IEEE Trans. Image Processing, vol. 11, pp. 1295-1304, Nov. 2002.
    • (2002) IEEE Trans. Image Processing , vol.11 , pp. 1295-1304
    • Combettes, P.1    Lou, J.2
  • 39
    • 0035442514 scopus 로고    scopus 로고
    • Wavelet-based image estimation: An empirical Bayes approach using Jeifreys' noninformative prior
    • Sept
    • M. A. T. Figueiredo and R. D. Nowak, "Wavelet-based image estimation: an empirical Bayes approach using Jeifreys' noninformative prior," IEEE Trans. Image Processing, vol. 10, pp. 1322-1331, Sept. 2001.
    • (2001) IEEE Trans. Image Processing , vol.10 , pp. 1322-1331
    • Figueiredo, M.A.T.1    Nowak, R.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.