메뉴 건너뛰기




Volumn 9, Issue 1, 2004, Pages 89-116

Incremental maintenance on the border of the space of emerging patterns

Author keywords

Borders; Emerging patterns (EPs); Incremental maintenance algorithms

Indexed keywords

BORDERS; BOUNDARY DESCRIPTIONS; EMERGING PATTERNS (EP); INCREMENTAL MAINTENANCE ALGORITHMS;

EID: 3543068174     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:DAMI.0000026901.85057.58     Document Type: Article
Times cited : (16)

References (31)
  • 5
    • 18144424165 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Blake, C. and Murphy, P. 1998. The UCI machine learning repository, [http://www.cs.uci.edu/mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.
    • (1998) The UCI Machine Learning Repository
    • Blake, C.1    Murphy, P.2
  • 6
    • 0002546079 scopus 로고
    • Attribute-oriented induction in relational databases
    • G. Piatetsky-Shapiro and W.J. Frawley (Eds.), AAAI/MIT Press
    • Cai, Y., Cercone, N., and Han, J. 1991. Attribute-oriented induction in relational databases. In Knowledge Discovery in Databases, G. Piatetsky-Shapiro and W.J. Frawley (Eds.), AAAI/MIT Press, pp. 213-228.
    • (1991) Knowledge Discovery in Databases , pp. 213-228
    • Cai, Y.1    Cercone, N.2    Han, J.3
  • 10
    • 0031221767 scopus 로고    scopus 로고
    • The common order-theoretic structure of version spaces and ATMS's
    • Gunter, C.A., Ngair, T.-H., and Subramanian, D. 1997. The common order-theoretic structure of version spaces and ATMS's. Artificial Intelligence, 95:357-407.
    • (1997) Artificial Intelligence , vol.95 , pp. 357-407
    • Gunter, C.A.1    Ngair, T.-H.2    Subramanian, D.3
  • 11
    • 0002479811 scopus 로고    scopus 로고
    • Exploration of the power of attribute-oriented induction in data mining
    • U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.), AAAI/MIT Press
    • Han, J. and Fu, Y. 1996. Exploration of the power of attribute-oriented induction in data mining. In Advances in Knowledge Discovery and Data mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.), AAAI/MIT Press, pp. 399-421.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 399-421
    • Han, J.1    Fu, Y.2
  • 13
    • 0028530086 scopus 로고
    • Generalizing version spaces
    • Hirsh, H. 1994. Generalizing version spaces. Machine Learning, 17:5-46.
    • (1994) Machine Learning , vol.17 , pp. 5-46
    • Hirsh, H.1
  • 14
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used data sets
    • Holte, R.C. 1993. Very simple classification rules perform well on most commonly used data sets. Machine Learning, 11:63-90.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 16
    • 0005914748 scopus 로고    scopus 로고
    • Department of Computer Science and Software Engineering. The University of Melbourne, Australia: Ph.D. Thesis
    • Li, J. 2001. Mining emerging patterns to construct accurate and efficient classifiers. Department of Computer Science and Software Engineering. The University of Melbourne, Australia: Ph.D. Thesis.
    • (2001) Mining Emerging Patterns to Construct Accurate and Efficient Classifiers
    • Li, J.1
  • 19
    • 1242352538 scopus 로고    scopus 로고
    • DeEPs: A new instance-based lazy discovery and classification system
    • Li, J., Dong, G., Ramamohanarao, K., and Wong, L. 2004. DeEPs: A new instance-based lazy discovery and classification system. Machine Learning, 54:99-124.
    • (2004) Machine Learning , vol.54 , pp. 99-124
    • Li, J.1    Dong, G.2    Ramamohanarao, K.3    Wong, L.4
  • 20
    • 0037245821 scopus 로고    scopus 로고
    • Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients
    • Li, J., Liu, H., Downing, J.R., Yeoh, A.E.-J., and Wong, L. 2003. Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients. Bioinformatics, 19:71-78.
    • (2003) Bioinformatics , vol.19 , pp. 71-78
    • Li, J.1    Liu, H.2    Downing, J.R.3    Yeoh, A.E.-J.4    Wong, L.5
  • 21
    • 0001321006 scopus 로고    scopus 로고
    • The space of jumping emerging patterns and its incremental maintenance algorithms
    • Stanford, CA, USA, San Francisco: Morgan Kaufmann
    • Li, J., Ramamohanarao, K., and Dong, G. 2000b. The space of jumping emerging patterns and its incremental maintenance algorithms. In Proceedings of the Seventeenth International Conference on Machine Learning. Stanford, CA, USA, San Francisco: Morgan Kaufmann, pp. 551-558.
    • (2000) Proceedings of the Seventeenth International Conference on Machine Learning , pp. 551-558
    • Li, J.1    Ramamohanarao, K.2    Dong, G.3
  • 23
    • 0036083435 scopus 로고    scopus 로고
    • Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns
    • Li, J. and Wong, L. 2002b. Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics, 18:725-734.
    • (2002) Bioinformatics , vol.18 , pp. 725-734
    • Li, J.1    Wong, L.2
  • 24
    • 21944442464 scopus 로고    scopus 로고
    • Levelwise search and borders of theories in knowledge discovery
    • Mannila, H. and Toivonen, H. 1997. Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1:241-258.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 241-258
    • Mannila, H.1    Toivonen, H.2
  • 26
    • 0000531852 scopus 로고
    • Generalization as search
    • Mitchell, T. 1982. Generalization as search. Artificial Intelligence, 18:203-226.
    • (1982) Artificial Intelligence , vol.18 , pp. 203-226
    • Mitchell, T.1
  • 29
    • 0005365017 scopus 로고    scopus 로고
    • Delaying the choice of bias: A disjunctive version space approach. Machine Learning
    • Morgan Kaufmann
    • Sebag, M. 1996. Delaying the choice of bias: A disjunctive version space approach. Machine Learning. In Proceedings of the Thirteenth International Conference. Morgan Kaufmann, pp. 444-452.
    • (1996) Proceedings of the Thirteenth International Conference , pp. 444-452
    • Sebag, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.