-
1
-
-
0003661003
-
-
Cambridge University Press, Cambridge
-
J.A. Sethian, Level Set Methods - Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, Cambridge, 1996).
-
(1996)
Level Set Methods - Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science
-
-
Sethian, J.A.1
-
6
-
-
23544474504
-
A model for fast computer simulation of waves in excitable media
-
D. Barkley, A model for fast computer simulation of waves in excitable media, Physica D 49 (1991) 61-70.
-
(1991)
Physica D
, vol.49
, pp. 61-70
-
-
Barkley, D.1
-
8
-
-
0030491820
-
Geometric theory of trigger waves. A dynamical system approach
-
P.L. Simon and H. Farkas, Geometric theory of trigger waves. A dynamical system approach, J. Math. Chem. 19 (1996) 301-315.
-
(1996)
J. Math. Chem.
, vol.19
, pp. 301-315
-
-
Simon, P.L.1
Farkas, H.2
-
9
-
-
0031239446
-
Chemical waves in confined regions by Hamilton-Jacobi-Bellman theory
-
S. Sieniutycz and H. Farkas, Chemical waves in confined regions by Hamilton-Jacobi-Bellman theory, Chemical Engineering Science 52(17) (1997) 2927-2945.
-
(1997)
Chemical Engineering Science
, vol.52
, Issue.17
, pp. 2927-2945
-
-
Sieniutycz, S.1
Farkas, H.2
-
10
-
-
0012437071
-
Wave optics in reaction-diffusion systems
-
J. Sainhas and R. Dilao, Wave optics in reaction-diffusion systems, Phys. Rev. Letters 80 (1998) 5216-5219.
-
(1998)
Phys. Rev. Letters
, vol.80
, pp. 5216-5219
-
-
Sainhas, J.1
Dilao, R.2
-
11
-
-
84956515648
-
The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle
-
N. Wiener and A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle, Arch. Inst. Cardiol. Mexico 16 (1946) 205-265.
-
(1946)
Arch. Inst. Cardiol. Mexico
, vol.16
, pp. 205-265
-
-
Wiener, N.1
Rosenblueth, A.2
-
12
-
-
0001071503
-
Involutes: The geometry of chemical waves rotating in annular membranes
-
A. Lázár, Z. Noszticzius, H. Farkas and H.D. Försterling, Involutes: the geometry of chemical waves rotating in annular membranes, Chaos 5 (1995) 443-447.
-
(1995)
Chaos
, vol.5
, pp. 443-447
-
-
Lázár, A.1
Noszticzius, Z.2
Farkas, H.3
Försterling, H.D.4
-
13
-
-
0038065690
-
Waves of excitations on nonuniform membrane rings, caustics, and reverse involutes
-
A. Lázár, H.D. Försterling, H. Farkas, P.L. Simon, A. Volford and Z. Noszticzius, Waves of excitations on nonuniform membrane rings, caustics, and reverse involutes, Chaos 7 (1997) 731-737.
-
(1997)
Chaos
, vol.7
, pp. 731-737
-
-
Lázár, A.1
Försterling, H.D.2
Farkas, H.3
Simon, P.L.4
Volford, A.5
Noszticzius, Z.6
-
14
-
-
3543045936
-
Waves of excitation in heterogeneous annular region, asymmetric arrangement
-
eds. S. Janeczko and V.M. Zakhalyukin (Banach Center publications, Warszava)
-
A. Volford, P.L. Simon and H. Farkas, Waves of excitation in heterogeneous annular region, asymmetric arrangement, in: Geometry and Topology of Caustics - Caustics'98, eds. S. Janeczko and V.M. Zakhalyukin (Banach Center publications, Warszava, 1999) pp. 305-320.
-
(1999)
Geometry and Topology of Caustics - Caustics'98
, pp. 305-320
-
-
Volford, A.1
Simon, P.L.2
Farkas, H.3
-
15
-
-
0033324137
-
Rotating chemical waves: Theory and experiments
-
A. Volford, P.L. Simon, H. Farkas and Z. Noszticzius, Rotating chemical waves: theory and experiments, Physica A 274 (1999) 30-49.
-
(1999)
Physica A
, vol.274
, pp. 30-49
-
-
Volford, A.1
Simon, P.L.2
Farkas, H.3
Noszticzius, Z.4
-
18
-
-
3543045937
-
-
private communication (experimental figures)
-
A. Volford, private communication (experimental figures).
-
-
-
Volford, A.1
-
19
-
-
0000238336
-
A simplex method for function minimization
-
J.A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal 7 (1965) 308-313.
-
(1965)
Computer Journal
, vol.7
, pp. 308-313
-
-
Nelder, J.A.1
Mead, R.2
|