메뉴 건너뛰기




Volumn 18, Issue 3, 2007, Pages 926-945

Stability analysis for nonlinear optimal control problems subject to state constraints

Author keywords

Lipschitz stability of the solutions; Nonlinear ODEs; Optimal control; Parametric problems; Second order sufficient conditions; State constraints

Indexed keywords

COERCIVE FORCE; INTERSECTIONS; MAGNETIC PROPERTIES; OPTICAL BISTABILITY;

EID: 35348991377     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/060661247     Document Type: Conference Paper
Times cited : (19)

References (16)
  • 1
    • 49449084610 scopus 로고    scopus 로고
    • No-Gap Second-Order Optimality Conditions for Optimal Control Problems with a Single State Constraint and Control
    • 5837, INRIA, Le Chesnay
    • F. BONNANS AND A. HERMANT, No-Gap Second-Order Optimality Conditions for Optimal Control Problems with a Single State Constraint and Control, Research Report 5837, INRIA, Le Chesnay, 2006.
    • (2006) Research Report
    • BONNANS, F.1    HERMANT, A.2
  • 2
    • 0002449719 scopus 로고
    • Implicit function theorems for generalized equations
    • A. L. DONTCHEV, Implicit function theorems for generalized equations, Math. Program., 70 (1995), pp. 91-106.
    • (1995) Math. Program , vol.70 , pp. 91-106
    • DONTCHEV, A.L.1
  • 3
    • 0032026016 scopus 로고    scopus 로고
    • Lipschitzian stability for state constrained nonlinear optimal control
    • A. L. DONTCHEV AND W. W. HAGER, Lipschitzian stability for state constrained nonlinear optimal control, SIAM J. Control Optim., 36 (1998), pp. 698-718.
    • (1998) SIAM J. Control Optim , vol.36 , pp. 698-718
    • DONTCHEV, A.L.1    HAGER, W.W.2
  • 4
    • 0007902573 scopus 로고    scopus 로고
    • A characterization of Lipschitzian stability in optimal control, in Calculus of Variations and Optimal Control
    • A. Ioffe, S. Reich, and I. Shafrir, eds, Notes Math. 411, Chapman & Hall/CRC, Boca Raton, FL
    • A. L. DONTCHEV AND K. MALANOWSKI, A characterization of Lipschitzian stability in optimal control, in Calculus of Variations and Optimal Control, A. Ioffe, S. Reich, and I. Shafrir, eds., Chapman Hall/CRC Res. Notes Math. 411, Chapman & Hall/CRC, Boca Raton, FL, 2000, pp. 62-76.
    • (2000) Chapman Hall/CRC Res , pp. 62-76
    • DONTCHEV, A.L.1    MALANOWSKI, K.2
  • 5
    • 0018468242 scopus 로고
    • Lipschitz continuity for constrained processes
    • W. W. HAGER, Lipschitz continuity for constrained processes, SIAM J. Control Optim., 17 (1979), pp. 321-338.
    • (1979) SIAM J. Control Optim , vol.17 , pp. 321-338
    • HAGER, W.W.1
  • 6
    • 0029324375 scopus 로고
    • A survey of the maximum principles for optimal control problems with state constraints
    • R. F. HARTL, S. P. SETHI, AND R. G. VICKSON, A survey of the maximum principles for optimal control problems with state constraints, SIAM Rev., 37 (1995), pp. 181-218.
    • (1995) SIAM Rev , vol.37 , pp. 181-218
    • HARTL, R.F.1    SETHI, S.P.2    VICKSON, R.G.3
  • 7
    • 0000146438 scopus 로고
    • Two-norm approach in stability and sensitivity analysis for optimization and optimal control problems
    • K. MALANOWSKI, Two-norm approach in stability and sensitivity analysis for optimization and optimal control problems, Adv. Math. Sci. Appl., 2 (1993), pp. 397-443.
    • (1993) Adv. Math. Sci. Appl , vol.2 , pp. 397-443
    • MALANOWSKI, K.1
  • 8
    • 0001620726 scopus 로고
    • Stability and sensitivity of solutions to nonlinear optimal control problems
    • K. MALANOWSKI, Stability and sensitivity of solutions to nonlinear optimal control problems, Appl. Math. Optim., 32 (1995), pp. 111-141.
    • (1995) Appl. Math. Optim , vol.32 , pp. 111-141
    • MALANOWSKI, K.1
  • 10
    • 0037300841 scopus 로고    scopus 로고
    • On normality of Lagrange multipliers for state constrained optimal control problems
    • K. MALANOWSKI, On normality of Lagrange multipliers for state constrained optimal control problems, Optimization, 52 (2003), pp. 75-91.
    • (2003) Optimization , vol.52 , pp. 75-91
    • MALANOWSKI, K.1
  • 11
    • 33947104220 scopus 로고    scopus 로고
    • Sufficient optimality conditions in stability analysis for state-constrained optimal control
    • K. MALANOWSKI, Sufficient optimality conditions in stability analysis for state-constrained optimal control, Appl. Math. Optim., 55 (2007), pp. 255-271.
    • (2007) Appl. Math. Optim , vol.55 , pp. 255-271
    • MALANOWSKI, K.1
  • 12
    • 34547361278 scopus 로고    scopus 로고
    • Stability and sensitivity analysis for linear-quadratic optimal control subject to state constraints
    • K. MALANOWSKI, Stability and sensitivity analysis for linear-quadratic optimal control subject to state constraints, Optimization, 56 (2007), pp. 463-478.
    • (2007) Optimization , vol.56 , pp. 463-478
    • MALANOWSKI, K.1
  • 13
    • 0000570227 scopus 로고
    • First and second order sufficient optimality conditions in mathematical programming and optimal control
    • H. MAURER, First and second order sufficient optimality conditions in mathematical programming and optimal control, Math. Programming Study, 14 (1981), pp. 163-177.
    • (1981) Math. Programming Study , vol.14 , pp. 163-177
    • MAURER, H.1
  • 15
    • 0019397127 scopus 로고    scopus 로고
    • J. V. OUTRATA AND Z. SCHINDLER, An augmented Lagrangian method for a class of convex optimal control problems, Prob. Control Inform. Theory, 10 (1980), pp. 67-81.
    • J. V. OUTRATA AND Z. SCHINDLER, An augmented Lagrangian method for a class of convex optimal control problems, Prob. Control Inform. Theory, 10 (1980), pp. 67-81.
  • 16
    • 0018977011 scopus 로고
    • Strongly regular generalized equations
    • S. M. ROBINSON, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43-62.
    • (1980) Math. Oper. Res , vol.5 , pp. 43-62
    • ROBINSON, S.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.