-
1
-
-
0033303216
-
-
See for example polynuclear cyano complexes in materials science: a
-
See for example polynuclear cyano complexes in materials science: a) M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaissermann, M. Seuleiman, C. Desplanches, A. Scuiller, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier, F. Villain, Coord. Chem. Rev. 1999, 190-192, 1023;
-
(1999)
Coord. Chem. Rev
, vol.190-192
, pp. 1023
-
-
Verdaguer, M.1
Bleuzen, A.2
Marvaud, V.3
Vaissermann, J.4
Seuleiman, M.5
Desplanches, C.6
Scuiller, A.7
Train, C.8
Garde, R.9
Gelly, G.10
Lomenech, C.11
Rosenman, I.12
Veillet, P.13
Cartier, C.14
Villain, F.15
-
4
-
-
33846408795
-
-
J. Cordaro, D. Stein, H. Grützmacher, Angew. Chem. 2006, 118, 6305;
-
(2006)
Angew. Chem
, vol.118
, pp. 6305
-
-
Cordaro, J.1
Stein, D.2
Grützmacher, H.3
-
8
-
-
35349017299
-
-
Structure data: 3: Colorless crystals suitable for X-ray analysis were obtained directly from the reaction vessel when wet CH3CN was used as solvent in place of THF; C71H65OP 5RuSi·C2H3N, monoclinic, space group P21/c, a, 15.718(1, b, 22.248(1, c, 19.197(1) Å, V, 6218.5(6) Å3, Z, 4, ρcalcd, 1.345 Mg m-3, crystal dimensions 0.54 x 0.40 x 0.09 mm3, Bruker SMART Apex diffractometer with CCD area detector, MoKα radiation (0.71073 Å, 200 K, 2Θmax, 56.74°, 67870 reflections, 15535 independent (Rint, 0.0268, direct methods; refinement against full matrix (versus F 2) with SHELXTL (v.6.12) and SHELXL-97; 744 parameters, R1, 0.0459 and wR2 all data, 0.1290, max./min. residual electron density 1.49
-
-3. The main residual electron density is located at the heavy atom ruthenium. All non-hydrogen atoms were refined anisotropically. The contribution of the hydrogen atoms, in their calculated positions, was included in the refinement using a riding model. CCDC-634845 (3) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
-
-
-
-
10
-
-
0005253125
-
-
2{P(=O)CtBu(C=O)}]: A. F. Hill, C. Jones, A. J. P. White, D. J. Williams, J. D. E. T. Wilton-Ely, Chem. Commun. 1998, 367.
-
2{P(=O)CtBu(C=O)}]: A. F. Hill, C. Jones, A. J. P. White, D. J. Williams, J. D. E. T. Wilton-Ely, Chem. Commun. 1998, 367.
-
-
-
-
11
-
-
0005329079
-
-
R. B. Bedford, A. F. Hill, C. Jones, A. J. P. White, D. J. Williams, J. D. E. T. Wilton-Ely, Organometallics 1998, 17, 4744.
-
(1998)
Organometallics
, vol.17
, pp. 4744
-
-
Bedford, R.B.1
Hill, A.F.2
Jones, C.3
White, A.J.P.4
Williams, D.J.5
Wilton-Ely, J.D.E.T.6
-
12
-
-
0041821739
-
-
a) N. Merceron-Saffon, A. Bacereido, H. Gornitzka, G. Bertrand, Science 2003, 301, 1223;
-
(2003)
Science
, vol.301
, pp. 1223
-
-
Merceron-Saffon, N.1
Bacereido, A.2
Gornitzka, H.3
Bertrand, G.4
-
13
-
-
0034607853
-
-
b) C. Buron, H. Gornitzka, V. Romanenko, G. Bertrand, Science 2000, 288, 834;
-
(2000)
Science
, vol.288
, pp. 834
-
-
Buron, C.1
Gornitzka, H.2
Romanenko, V.3
Bertrand, G.4
-
14
-
-
0002138516
-
-
c) D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chem. Rev. 2000, 100, 39.
-
(2000)
Chem. Rev
, vol.100
, pp. 39
-
-
Bourissou, D.1
Guerret, O.2
Gabbaï, F.P.3
Bertrand, G.4
-
15
-
-
35348951457
-
-
DFT calculations were performed using ADF2006.01, E. J. Baerends, J. Autschbach, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, G. van Kessel, F. Kootstra, E. van Lenthe, D. A. McCormack, A. Michalak, J. Neugebauer, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, and T. Ziegler, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. The exchange-correlation potential is based on the GGA exchange f
-
DFT calculations were performed using ADF2006.01, E. J. Baerends, J. Autschbach, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, G. van Kessel, F. Kootstra, E. van Lenthe, D. A. McCormack, A. Michalak, J. Neugebauer, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, and T. Ziegler, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. The exchange-correlation potential is based on the GGA exchange functional OPTX (N. C. Handy, A. J. Cohen, Mol. Phys. 2001, 99, 403)
-
-
-
-
16
-
-
4243943295
-
-
in combination with the non-empirical PBE (J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865)
-
in combination with the non-empirical PBE (J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865)
-
-
-
-
17
-
-
0000458921
-
-
(OPBE) and an uncontracted triple-zeta valence-plus-polarization STO basis set is used for all the atoms including relativistic effects by the ZORA approximation (E. van Lenthe, A. W. Ehlers, E. J. Baerends, J. Chem. Phys. 1999, 110, 8943).
-
(OPBE) and an uncontracted triple-zeta valence-plus-polarization STO basis set is used for all the atoms including relativistic effects by the ZORA approximation (E. van Lenthe, A. W. Ehlers, E. J. Baerends, J. Chem. Phys. 1999, 110, 8943).
-
-
-
-
18
-
-
35348938994
-
-
A comparison of the calculated versus experimental 31P NMR chemical shifts of [RuH(PH3)4{O=P=CH(SiH3, δ(31P)calcd, 345 ppm versus δ( 31P)exp, 332 ppm in 3, and [RuH(PH 3)4(C≡ P, δ(31P)calcd, 140 ppm versus δ(31P)exp, 165 ppm in 2, make us confident that the chosen level of theory, B3LYP/GIAO 6-311 +G* (C,H,O,Si,P, LACV3P(Ru, is sufficient. The shieldings are referenced against the calculated value of P(CF3)3 which was set to δ, 3 ppm versus 30, H3PO4. The GIAO calculations were performed with Gaussian03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Me
-
4. The GIAO calculations were performed with Gaussian03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford, CT, 2004.
-
-
-
-
19
-
-
35348965623
-
-
This chemical shift is typical for C-metallophosphaalkenes,RP, C[MLn]R. L. Weber, Angew. Chem. 1996, 108, 292;
-
n]R. L. Weber, Angew. Chem. 1996, 108, 292;
-
-
-
-
20
-
-
33748225343
-
-
-1 higher in energy than the Z isomer.
-
-1 higher in energy than the Z isomer.
-
-
-
-
21
-
-
0039056301
-
-
The nucleophilic attack on phosphaalkynes at phosphorus is well documented, see: a
-
The nucleophilic attack on phosphaalkynes at phosphorus is well documented, see: a) J. F. Nixon, Coord. Chem. Rev. 1995, 145, 201;
-
(1995)
Coord. Chem. Rev
, vol.145
, pp. 201
-
-
Nixon, J.F.1
-
23
-
-
0037432895
-
-
1578;and references therein
-
Angew. Chem. Int. Ed. 2003, 42, 1578;and references therein.
-
(2003)
Angew. Chem. Int. Ed
, vol.42
-
-
|