메뉴 건너뛰기




Volumn 21, Issue 10, 2007, Pages 1622-1629

Construction of a surface roughness prediction model for high speed machining

Author keywords

High speed machining; Neural network; Surface roughness

Indexed keywords


EID: 35348942993     PISSN: 1738494X     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF03177385     Document Type: Conference Paper
Times cited : (6)

References (14)
  • 1
    • 33750356644 scopus 로고    scopus 로고
    • The effects of cutting tool geometry and processing parameters on the surface roughness of AISI 1030 steel
    • H. Gökkaya and M. Nalbant, The effects of cutting tool geometry and processing parameters on the surface roughness of AISI 1030 steel, Mater. Des. 28 (2007) 717-721.
    • (2007) Mater. Des , vol.28 , pp. 717-721
    • Gökkaya, H.1    Nalbant, M.2
  • 2
    • 33750343161 scopus 로고    scopus 로고
    • Milling surface roughness prediction using evolutionary programming methods
    • O. Colak, C. Kurbanoglu and M.C Kayacan, Milling surface roughness prediction using evolutionary programming methods, Mater. Des. 28 (2007) 657-666.
    • (2007) Mater. Des , vol.28 , pp. 657-666
    • Colak, O.1    Kurbanoglu, C.2    Kayacan, M.C.3
  • 3
    • 33646773258 scopus 로고    scopus 로고
    • Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm
    • H. Oktem, T. Erzurumlu and F. Erzincanli, Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm, Mater. Des. 27 (2006) 735-744.
    • (2006) Mater. Des , vol.27 , pp. 735-744
    • Oktem, H.1    Erzurumlu, T.2    Erzincanli, F.3
  • 4
    • 27344460096 scopus 로고    scopus 로고
    • Application of response surface methodology in the optimization of cutting conditions for surface roughness
    • H. Öktem, T. Erzurumlu and H. Kurtaran, Application of response surface methodology in the optimization of cutting conditions for surface roughness, J. Mater. Process. Technol. 170 (2005) 11-16.
    • (2005) J. Mater. Process. Technol , vol.170 , pp. 11-16
    • Öktem, H.1    Erzurumlu, T.2    Kurtaran, H.3
  • 5
    • 33746364528 scopus 로고    scopus 로고
    • The statistical modeling of surface roughness in high-speed flat end milling
    • B. Ozcelik and M. Bayramoglu, The statistical modeling of surface roughness in high-speed flat end milling, Int. J. Mack Tools Manuf. 46 (2006) 1395-1402.
    • (2006) Int. J. Mack Tools Manuf , vol.46 , pp. 1395-1402
    • Ozcelik, B.1    Bayramoglu, M.2
  • 6
    • 33144478321 scopus 로고    scopus 로고
    • Development of a fuzzy-nets-based in-process surface roughness adaptive control system in turning operations
    • E.D. Kirby, J.C. Chen and J.Z. Zhang, Development of a fuzzy-nets-based in-process surface roughness adaptive control system in turning operations, Expert Syst. Appl. 30 (2006) 592-604.
    • (2006) Expert Syst. Appl , vol.30 , pp. 592-604
    • Kirby, E.D.1    Chen, J.C.2    Zhang, J.Z.3
  • 7
    • 12444249998 scopus 로고    scopus 로고
    • Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks
    • T. Özel and Y. Karpat, Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks, Int. J. Mach. Tools Manuf 45 (2005) 467-479.
    • (2005) Int. J. Mach. Tools Manuf , vol.45 , pp. 467-479
    • Özel, T.1    Karpat, Y.2
  • 8
    • 6344254958 scopus 로고    scopus 로고
    • Signal analysis of surface roughness in diamond turning of lens molds
    • H. Hocheng and M.L. Hsieh, Signal analysis of surface roughness in diamond turning of lens molds, Int. J. Mach. Tools Manuf. 44 (2004) 1607-1618.
    • (2004) Int. J. Mach. Tools Manuf , vol.44 , pp. 1607-1618
    • Hocheng, H.1    Hsieh, M.L.2
  • 9
    • 0037427589 scopus 로고    scopus 로고
    • Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process
    • K.A. Risbood, U.S. Dixit and A.D. Sahasrabudhe, Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process, J. Mater. Process. Technol. 132 (2003) 203-214.
    • (2003) J. Mater. Process. Technol , vol.132 , pp. 203-214
    • Risbood, K.A.1    Dixit, U.S.2    Sahasrabudhe, A.D.3
  • 10
    • 0036815452 scopus 로고    scopus 로고
    • Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments
    • P.G. Benardos and G.C. Vosniakos, Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments, Robot. Comput. Integr. Manuf. 18 (2002) 343-354.
    • (2002) Robot. Comput. Integr. Manuf , vol.18 , pp. 343-354
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 11
    • 0033117056 scopus 로고    scopus 로고
    • An in-process surface recognition system based on neural networks in end milling cutting operations
    • Y.H. Tsai, J.C. Chen and S.J. Lou, An in-process surface recognition system based on neural networks in end milling cutting operations, Int. J. Mack Tools Manuf. 39 (1999) 583-605.
    • (1999) Int. J. Mack Tools Manuf , vol.39 , pp. 583-605
    • Tsai, Y.H.1    Chen, J.C.2    Lou, S.J.3
  • 12
    • 0035803614 scopus 로고    scopus 로고
    • The predictive model for machinability of 304 stainless steel
    • W.T. Chien and C.T. Chou, The predictive model for machinability of 304 stainless steel, J. Mater. Process. Technol. 118 (2001) 442-447.
    • (2001) J. Mater. Process. Technol , vol.118 , pp. 442-447
    • Chien, W.T.1    Chou, C.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.