메뉴 건너뛰기




Volumn 53, Issue 4, 2007, Pages 642-666

A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem

Author keywords

Bacterial optimization; Mixed model assembly line; Multi objective genetic algorithm; Multi objective sequencing problem; Multi objective shuffled frog leaping algorithm

Indexed keywords

COMPUTATION THEORY; GENETIC ALGORITHMS; OPTIMIZATION; PROBLEM SOLVING; PRODUCTION CONTROL;

EID: 35348847056     PISSN: 03608352     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cie.2007.06.007     Document Type: Article
Times cited : (182)

References (40)
  • 2
    • 0000363908 scopus 로고
    • Sequencing mixed-model assembly lines to level parts usage and minimize the length
    • Bard J.F., Shtub A., and Joshi S.B. Sequencing mixed-model assembly lines to level parts usage and minimize the length. International Journal of Production Research 32 (1994) 2431-2454
    • (1994) International Journal of Production Research , vol.32 , pp. 2431-2454
    • Bard, J.F.1    Shtub, A.2    Joshi, S.B.3
  • 3
    • 25444444000 scopus 로고    scopus 로고
    • "MOSS" multiobjective scatter search applied to non-linear multiple criteria optimization
    • Beausoleil R.P. "MOSS" multiobjective scatter search applied to non-linear multiple criteria optimization. European Journal of Operational Research 169 (2006) 426-449
    • (2006) European Journal of Operational Research , vol.169 , pp. 426-449
    • Beausoleil, R.P.1
  • 5
    • 35348847198 scopus 로고    scopus 로고
    • Botzheim, J., Koczy, L. T. (2004). Model Identification by Bacterial Optimization, Research supported by the National Scientific Research Fund OTKA T034233 and T034212, a Szechenyi University Research Grant 2004, and the National Research and Development Project Grant 2/0015/2002.
  • 8
    • 0004149207 scopus 로고
    • Oxford University Press, Oxford
    • Dawkins R. The selfish gene (1976), Oxford University Press, Oxford
    • (1976) The selfish gene
    • Dawkins, R.1
  • 9
    • 0033185714 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms: Problem difficulties and construction of test problems
    • Deb K. Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation Journal 7 3 (1999) 205-230
    • (1999) Evolutionary Computation Journal , vol.7 , Issue.3 , pp. 205-230
    • Deb, K.1
  • 12
    • 0038363680 scopus 로고    scopus 로고
    • Optimizing of water distribution network design using the shuffled frog leaping algorithm
    • Eusuff M.M., and Lansey K.E. Optimizing of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management 129 3 (2003) 210-225
    • (2003) Journal of Water Resources Planning and Management , vol.129 , Issue.3 , pp. 210-225
    • Eusuff, M.M.1    Lansey, K.E.2
  • 13
    • 33244474874 scopus 로고    scopus 로고
    • Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization
    • Eusuff M., Lansey K., and Pasha F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Engineering Optimization 38 2 (2006) 129-154
    • (2006) Engineering Optimization , vol.38 , Issue.2 , pp. 129-154
    • Eusuff, M.1    Lansey, K.2    Pasha, F.3
  • 14
    • 0001953837 scopus 로고
    • Genetic algorithms for multi-objective optimization: Formulation, discussion, and generalization
    • Forrest S. (Ed), Morgan Kaufman Publishers, San Mateo, California, University of Illinois at Urbana-Champaign
    • Fonseca C.M., and Fleming P.J. Genetic algorithms for multi-objective optimization: Formulation, discussion, and generalization. In: Forrest S. (Ed). Proceedings of the fifth international conference on genetic algorithms (1993), Morgan Kaufman Publishers, San Mateo, California, University of Illinois at Urbana-Champaign 416-423
    • (1993) Proceedings of the fifth international conference on genetic algorithms , pp. 416-423
    • Fonseca, C.M.1    Fleming, P.J.2
  • 15
    • 0028585530 scopus 로고    scopus 로고
    • Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm for multi-objective optimization. In Proceedings of the 1st IEEE-ICEC Conference (pp. 82-87).
  • 16
    • 0032120699 scopus 로고    scopus 로고
    • A genetic algorithm for multiple objective sequencing problems in mixed model assembly lines
    • Hyun C.J., Kim Y., and Kim Y.K. A genetic algorithm for multiple objective sequencing problems in mixed model assembly lines. Computers & Operations Research 25 7-8 (1998) 675-690
    • (1998) Computers & Operations Research , vol.25 , Issue.7-8 , pp. 675-690
    • Hyun, C.J.1    Kim, Y.2    Kim, Y.K.3
  • 17
    • 0001602291 scopus 로고
    • Note on sequencing JIT mixed-model assembly lines
    • Inman P.R., and Bulfin R.L. Note on sequencing JIT mixed-model assembly lines. Management Science 37 7 (1991) 904-910
    • (1991) Management Science , vol.37 , Issue.7 , pp. 904-910
    • Inman, P.R.1    Bulfin, R.L.2
  • 18
    • 35348918277 scopus 로고    scopus 로고
    • Jaszkiewicz, A. (1999). Genetic local search for multiple objective combinatorial optimization, Technical Report RA-014/98, Institute of Computing Science, Poznan University of Technology: Technical Report.
  • 20
    • 0035341955 scopus 로고    scopus 로고
    • Bicriteria sequencing methods for the mixed-model assembly line in Just-in-time Production systems
    • Korkmazel T., and Meral S. Bicriteria sequencing methods for the mixed-model assembly line in Just-in-time Production systems. European Journal of Operational Research 131 (2001) 188-207
    • (2001) European Journal of Operational Research , vol.131 , pp. 188-207
    • Korkmazel, T.1    Meral, S.2
  • 21
    • 35348878604 scopus 로고    scopus 로고
    • Lian, Z., Gu, X., & Jiao, B. (in press). A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan, CHAOS SOLITOND & FRACTALS 2006.
  • 22
    • 13544275547 scopus 로고    scopus 로고
    • A multi-objective genetic algorithm for mixed-model sequencing on JIT assembly Lines
    • Mansouri S.A. A multi-objective genetic algorithm for mixed-model sequencing on JIT assembly Lines. European Journal of Operational Research 167 3 (2005) 696-716
    • (2005) European Journal of Operational Research , vol.167 , Issue.3 , pp. 696-716
    • Mansouri, S.A.1
  • 23
    • 0032120278 scopus 로고    scopus 로고
    • An JIT sequencing for mixed-model assembly lines with setups using tabu search production
    • McMullen P.R. An JIT sequencing for mixed-model assembly lines with setups using tabu search production. Planning & Control 9 5 (1998) 504-510
    • (1998) Planning & Control , vol.9 , Issue.5 , pp. 504-510
    • McMullen, P.R.1
  • 24
    • 0035545592 scopus 로고    scopus 로고
    • An efficient frontier approach to addressing JIT sequencing problems with setups via search heuristics
    • McMullen P.R. An efficient frontier approach to addressing JIT sequencing problems with setups via search heuristics. Computers & Industrial Engineering 41 (2001) 335-353
    • (2001) Computers & Industrial Engineering , vol.41 , pp. 335-353
    • McMullen, P.R.1
  • 25
    • 0035973393 scopus 로고    scopus 로고
    • A Kohonen self-organizing map approach to addressing a multiple objective, mixed-model JIT sequencing problem
    • McMullen P.R. A Kohonen self-organizing map approach to addressing a multiple objective, mixed-model JIT sequencing problem. International Journal of Production Economics 72 (2001) 59-71
    • (2001) International Journal of Production Economics , vol.72 , pp. 59-71
    • McMullen, P.R.1
  • 26
    • 0035385251 scopus 로고    scopus 로고
    • An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives
    • McMullen P.R. An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives. Artificial Intelligence in Engineering 15 (2001) 309-317
    • (2001) Artificial Intelligence in Engineering , vol.15 , pp. 309-317
    • McMullen, P.R.1
  • 27
    • 0001169951 scopus 로고    scopus 로고
    • A simulated annealing approach to mixed-model sequencing with multiple objectives on a JIT line
    • McMullen P.R., and Frazier G.V. A simulated annealing approach to mixed-model sequencing with multiple objectives on a JIT line. IIE Transactions 32 8 (2000) 679-686
    • (2000) IIE Transactions , vol.32 , Issue.8 , pp. 679-686
    • McMullen, P.R.1    Frazier, G.V.2
  • 28
    • 0001360372 scopus 로고
    • Level schedules for mixed-model assembly lines in just-in-time production systems
    • Miltenburg J. Level schedules for mixed-model assembly lines in just-in-time production systems. Management Science 35 2 (1989) 192-207
    • (1989) Management Science , vol.35 , Issue.2 , pp. 192-207
    • Miltenburg, J.1
  • 29
    • 0025251040 scopus 로고
    • A dynamic programming algorithm for scheduling mixed-model just-in-time production systems
    • Miltenburg J., Steiner G., and Yeomans S. A dynamic programming algorithm for scheduling mixed-model just-in-time production systems. Mathematical Computation Modeling 13 (1990) 57-66
    • (1990) Mathematical Computation Modeling , vol.13 , pp. 57-66
    • Miltenburg, J.1    Steiner, G.2    Yeomans, S.3
  • 30
    • 0003449926 scopus 로고
    • Institute if industrial engineers Press, Atlanta, GA
    • Monden Y. Toyota production system (1983), Institute if industrial engineers Press, Atlanta, GA
    • (1983) Toyota production system
    • Monden, Y.1
  • 31
    • 0018469357 scopus 로고
    • A heuristic algorithm for the assembly line model-mix sequencing problem to minimize the risk of stopping the conveyor
    • Okamura K., and Yamshina H. A heuristic algorithm for the assembly line model-mix sequencing problem to minimize the risk of stopping the conveyor. International Journal of Production Research 17 (1979) 233-247
    • (1979) International Journal of Production Research , vol.17 , pp. 233-247
    • Okamura, K.1    Yamshina, H.2
  • 32
    • 35348876110 scopus 로고    scopus 로고
    • Pilegaard Hansen, M. (1997). Tabu search in multiobjective optimization: MOTS. In Proceedings of the 13th International Conference on Multiple Criteria Decision Making (MCDM_97), Cape Town, South Africa.
  • 34
    • 0000852513 scopus 로고
    • Multi-objective optimization using non-dominated sorting in genetic algorithms
    • Srinivas N., and Deb K. Multi-objective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation 2 2 (1994) 221-248
    • (1994) Evolutionary Computation , vol.2 , Issue.2 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 35
    • 33750480526 scopus 로고    scopus 로고
    • Multi-criteria sequencing problem for a mixed-model assembly line in a JIT production system
    • Tavakkoli-Moghaddam R., and Rahimi-Vahed A.R. Multi-criteria sequencing problem for a mixed-model assembly line in a JIT production system. Applied Mathematics and Computation 181 2 (2006) 1471-1481
    • (2006) Applied Mathematics and Computation , vol.181 , Issue.2 , pp. 1471-1481
    • Tavakkoli-Moghaddam, R.1    Rahimi-Vahed, A.R.2
  • 36
    • 0032678662 scopus 로고    scopus 로고
    • Veldhuizen, D. V., & Lamont, G. (1999). In J. Carroll, H. Haddad, D. Oppenheim, B. Bryant, G. Lamont (Eds.), Multi-objective Evolutionary Algorithm Test Suites. (pp. 351-357).
  • 38
    • 33845418462 scopus 로고
    • Sequencing to minimize work overload in assembly lines with product options
    • Yano C.A., and Rachamadugu R. Sequencing to minimize work overload in assembly lines with product options. Management Science 37 (1991) 572-586
    • (1991) Management Science , vol.37 , pp. 572-586
    • Yano, C.A.1    Rachamadugu, R.2
  • 39
    • 35348863152 scopus 로고    scopus 로고
    • Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, T. Fogarty (Eds.), EUROGEN 2001, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, September, pp. 95-100.
  • 40
    • 35348853813 scopus 로고    scopus 로고
    • Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength pareto evolutionary algorithm. Computer Engineering and Networks Laboratory (TIK)-Report 103.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.