-
1
-
-
85025262253
-
Sampling and integration of near log-concave functions
-
D. Applegate and R. Kannan: Sampling and integration of near log-concave functions. Proc. 23th ACM STOC (1990), 156-163.
-
(1990)
Proc. 23th ACM STOC
, pp. 156-163
-
-
Applegate, D.1
Kannan, R.2
-
2
-
-
0003361152
-
Normed spaces with a weak-Gordon-Lewis property
-
Functional analysis Austin, TX, /, Springer, Berlin, 1991
-
K. Ball: Normed spaces with a weak-Gordon-Lewis property. Functional analysis (Austin, TX, 1987/1989), 36-47, Lecture Notes in Math., 1470, Springer, Berlin, 1991.
-
(1987)
Lecture Notes in Math
, vol.1470
, pp. 36-47
-
-
Ball, K.1
-
5
-
-
38749144169
-
-
S. G. Bobkov and A. Koldobsky: On the central limit property of convex bodies, Geom. Aspects of Funct. Analysis (Milman-Schechtman eds.), Lecture Notes in Math. 1807 (2003).
-
S. G. Bobkov and A. Koldobsky: On the central limit property of convex bodies, Geom. Aspects of Funct. Analysis (Milman-Schechtman eds.), Lecture Notes in Math. 1807 (2003).
-
-
-
-
6
-
-
38749133173
-
-
J. Bourgain: On the distribution of polynomials on high dimensional convex sets, Geom. Aspects of Funct. Analysis (Lindenstrauss-Milman eds.), Lecture Notes in Math. 1469 (1991), 127-137.
-
J. Bourgain: On the distribution of polynomials on high dimensional convex sets, Geom. Aspects of Funct. Analysis (Lindenstrauss-Milman eds.), Lecture Notes in Math. 1469 (1991), 127-137.
-
-
-
-
7
-
-
0000432030
-
2/2 on linear search programs for the knapsack problem
-
2/2 on linear search programs for the knapsack problem. J. Comput. Syst. Sci., 16:413-417, 1978.
-
(1978)
J. Comput. Syst. Sci
, vol.16
, pp. 413-417
-
-
Dobkin, D.1
Lipton, R.2
-
8
-
-
0003672936
-
Computing the volume of convex bodies: A case where randomness provably helps
-
M. Dyer and A. Frieze: Computing the volume of convex bodies: a case where randomness provably helps. Proc. Symp. Appl. Math. 44, (1991), 123-169.
-
(1991)
Proc. Symp. Appl. Math
, vol.44
, pp. 123-169
-
-
Dyer, M.1
Frieze, A.2
-
9
-
-
0025720957
-
A random polynomialtime algorithm for approximating the volume of convex bodies
-
Mach
-
M. Dyer, A. Frieze and R. Kannan: A random polynomialtime algorithm for approximating the volume of convex bodies. J. Assoc. Comput. Mach 38 (1991), 1-17.
-
(1991)
J. Assoc. Comput
, vol.38
, pp. 1-17
-
-
Dyer, M.1
Frieze, A.2
Kannan, R.3
-
10
-
-
0000324960
-
Eigenvalues and Condition Numbers of Random Matrices
-
A. Edelman: Eigenvalues and Condition Numbers of Random Matrices. SIAMJ. Matrix Anal. Appl. 9, 4, (1988), 543-560.
-
(1988)
SIAMJ. Matrix Anal. Appl
, vol.9
, Issue.4
, pp. 543-560
-
-
Edelman, A.1
-
11
-
-
0038372147
-
A Geometric Inequality and the Complexity of Computing Volume
-
G. Elekes: A Geometric Inequality and the Complexity of Computing Volume. Discrete & Computational Geometry 1, (1986), 289-292.
-
(1986)
Discrete & Computational Geometry
, vol.1
, pp. 289-292
-
-
Elekes, G.1
-
14
-
-
38249043088
-
Random generation of combinatorial structures from a uniform distribution
-
M. Jerrum, L. G. Valiant, and V. V. Vazirani: Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science 43 (1986), 169-188.
-
(1986)
Theoretical Computer Science
, vol.43
, pp. 169-188
-
-
Jerrum, M.1
Valiant, L.G.2
Vazirani, V.V.3
-
17
-
-
0025802278
-
The Mixing rate of Markov chains, an isoperime trie inequality, and computing the volume
-
L. Lovász and M. Simonovits: The Mixing rate of Markov chains, an isoperime trie inequality, and computing the volume. Proc 31st IEEE Annual Symp. on Fo und. of Comp. Sei. (1990), 346-354.
-
(1990)
Proc 31st IEEE Annual Symp. on Fo und. of Comp. Sei
, pp. 346-354
-
-
Lovász, L.1
Simonovits, M.2
-
18
-
-
84990634606
-
Random walks in a convex body and an improved volume algorithm
-
L. Lovász and M. Simonovits: Random walks in a convex body and an improved volume algorithm. Random Structures and Alg. A (1993), 359-412.
-
(1993)
Random Structures and Alg. A
, pp. 359-412
-
-
Lovász, L.1
Simonovits, M.2
-
19
-
-
38749114446
-
The geometry of logconcave functions and sampling algorithms
-
To appear in
-
L. Lovász and S. Vempala: The geometry of logconcave functions and sampling algorithms. To appear in Random Structures and Alg.
-
Random Structures and Alg
-
-
Lovász, L.1
Vempala, S.2
-
20
-
-
85128137106
-
-
4) algorithm. J. Comp. Sys. Sci. (2006).
-
4) volume algorithm. J. Comp. Sys. Sci. (2006).
-
-
-
-
21
-
-
0002904748
-
Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed ndimensional space
-
Geometric Aspects of Functional Analysis, Springer, Berlin () 88
-
V.D. Milman and A. Pajor: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed ndimensional space. Geometric Aspects of Functional Analysis (1987-88), 64-104, Lecture Notes in Math., 1376. Springer, Berlin (1989)
-
(1987)
Lecture Notes in Math
, vol.1376
, pp. 64-104
-
-
Milman, V.D.1
Pajor, A.2
-
23
-
-
13944274031
-
How to compute the volume in high dimension?
-
M. Simonovits: How to compute the volume in high dimension? Math. Prog. (B), 97, (2003), 337-374.
-
(2003)
Math. Prog. (B
, vol.97
, pp. 337-374
-
-
Simonovits, M.1
-
24
-
-
38749118817
-
-
S. Vempala: Geometric Random Walks: A Survey. Combinatorial and Computational Geometry, MSRI 52 (Ed.s J.E. Goodman , J. Pach and E. Welzl), (2005).
-
S. Vempala: Geometric Random Walks: A Survey. Combinatorial and Computational Geometry, MSRI 52 (Ed.s J.E. Goodman , J. Pach and E. Welzl), (2005).
-
-
-
|