-
1
-
-
0001093666
-
-
See, for example, PLRAAN 1050-2947 10.1103/PhysRevA.60.2534
-
See, for example, M. Fleischhauer, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.60.2534 60, 2534 (1999), and references therein
-
(1999)
Phys. Rev. A
, vol.60
, pp. 2534
-
-
Fleischhauer, M.1
-
2
-
-
6744237822
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.85.1851
-
M. E. Crenshaw and C. M. Bowden, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.1851 85, 1851 (2000)
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 1851
-
-
Crenshaw, M.E.1
Bowden, C.M.2
-
4
-
-
1642279729
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.053601
-
P. R. Berman and P. W. Milonni, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.053601 92, 053601 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 053601
-
-
Berman, P.R.1
Milonni, P.W.2
-
5
-
-
27144456524
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.72.022104
-
H. Fu and P. R. Berman, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.72.022104 72, 022104 (2005).
-
(2005)
Phys. Rev. A
, vol.72
, pp. 022104
-
-
Fu, H.1
Berman, P.R.2
-
6
-
-
35949034299
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.10.1096
-
P. W. Milonni and P. L. Knight, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.10.1096 10, 1096 (1974).
-
(1974)
Phys. Rev. A
, vol.10
, pp. 1096
-
-
Milonni, P.W.1
Knight, P.L.2
-
7
-
-
0001246273
-
-
See, for example, PLRAAN 1050-2947 10.1103/PhysRevA.2.883
-
See, for example, R. H. Lehmberg, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.2.883 2, 883 (1970)
-
(1970)
Phys. Rev. A
, vol.2
, pp. 883
-
-
Lehmberg, R.H.1
-
8
-
-
0001330689
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.2.2038
-
G. S. Agarwal, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.2.2038 2, 2038 (1970)
-
(1970)
Phys. Rev. A
, vol.2
, pp. 2038
-
-
Agarwal, G.S.1
-
9
-
-
0019438272
-
-
OPCOB8 0030-4018 10.1016/0030-4018(81)90152-8
-
Z. Ficek, R. Tana, and S. Kielich, Opt. Commun. OPCOB8 0030-4018 10.1016/0030-4018(81)90152-8 36, 121 (1981)
-
(1981)
Opt. Commun.
, vol.36
, pp. 121
-
-
Ficek, Z.1
Tana, R.2
Kielich, S.3
-
10
-
-
0000891268
-
-
0030-3909;
-
Th. Richter, Opt. Acta 30, 1769 (1983) 0030-3909
-
(1983)
Opt. Acta
, vol.30
, pp. 1769
-
-
Richter, Th.1
-
11
-
-
4244125932
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.44.546
-
Z. Chen and H. Freedhoff, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.44.546 44, 546 (1991), and references therein
-
(1991)
Phys. Rev. A
, vol.44
, pp. 546
-
-
Chen, Z.1
Freedhoff, H.2
-
12
-
-
4243629962
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.55.4466
-
P. R. Berman, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.55.4466 55, 4466 (1997), and references therein
-
(1997)
Phys. Rev. A
, vol.55
, pp. 4466
-
-
Berman, P.R.1
-
13
-
-
0347396650
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.59.2524
-
H. T. Dung and K. Ujihara, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.59.2524 59, 2524 (1999)
-
(1999)
Phys. Rev. A
, vol.59
, pp. 2524
-
-
Dung, H.T.1
Ujihara, K.2
-
14
-
-
4444319999
-
-
OPCOB8 0030-4018 10.1016/j.optcom.2004.06.016
-
Z. Haizhen and K. Ujihara, Opt. Commun. OPCOB8 0030-4018 10.1016/j.optcom.2004.06.016 240, 153 (2004) and references therein.
-
(2004)
Opt. Commun.
, vol.240
, pp. 153
-
-
Haizhen, Z.1
Ujihara, K.2
-
18
-
-
34250914718
-
-
ZEPYAA 0044-3328 10.1007/BF01336768
-
V. Weisskopf and E. Wigner, Z. Phys. ZEPYAA 0044-3328 10.1007/BF01336768 63, 54 (1930).
-
(1930)
Z. Phys.
, vol.63
, pp. 54
-
-
Weisskopf, V.1
Wigner, E.2
-
19
-
-
33244454511
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.72.025804
-
P. R. Berman, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.72.025804 72, 025804 (2005).
-
(2005)
Phys. Rev. A
, vol.72
, pp. 025804
-
-
Berman, P.R.1
-
20
-
-
1942444316
-
-
In considering the field emitted by an atomic dipole, one can justify extension of the frequency integral to minus infinity by including non-energy-conserving terms in the calculation. The resulting integrals are perfectly convergent and lead to expressions for the average field that take the same form as the classical results. Thus, no Weisskopf-Wigner approximation is needed to obtain expressions for the field in terms of the dipole operator and its derivatives-see, for example, PLRAAN 1050-2947 10.1103/PhysRevA.69.022101
-
In considering the field emitted by an atomic dipole, one can justify extension of the frequency integral to minus infinity by including non-energy-conserving terms in the calculation. The resulting integrals are perfectly convergent and lead to expressions for the average field that take the same form as the classical results. Thus, no Weisskopf-Wigner approximation is needed to obtain expressions for the field in terms of the dipole operator and its derivatives-see, for example, P. R. Berman, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.69.022101 69, 022101 (2004), and references therein.
-
(2004)
Phys. Rev. A
, vol.69
, pp. 022101
-
-
Berman, P.R.1
-
21
-
-
35248857886
-
-
If the atom is excited "instantaneously," one can question the use of the adiabatic hypothesis. To avoid such problems, one can assume that the source atom is excited to its initial state by an optical pulse whose duration is much longer than |Δ| -1. The pulse duration is also assumed to be much shorter than γ-1, enabling one to neglect any radiation during the excitation pulse. The only property of b 2,0 (0) (t) used in this paper is that it is real and this property is in no way restrictive.
-
If the atom is excited "instantaneously," one can question the use of the adiabatic hypothesis. To avoid such problems, one can assume that the source atom is excited to its initial state by an optical pulse whose duration is much longer than |Δ| -1. The pulse duration is also assumed to be much shorter than γ-1, enabling one to neglect any radiation during the excitation pulse. The only property of b 2,0 (0) (t) used in this paper is that it is real and this property is in no way restrictive.
-
-
-
-
22
-
-
35248834150
-
-
In both Eqs. 44 45 one encounters terms of the form t′ 0t d t″ δ (t′ - t″) b2,0 (t″) = t′ [b2,0 (t′) Θ (t- t′) Θ (t′)] =Θ (t- t′) Θ (t′) t′ b2,0 (t′) - b2,0 (t) δ (t- t′) Θ (t′) + b2,0 (0) Θ (t- t′) δ (t′). It can be shown, however, that if one simply sets t′ 0t d t″ δ (t′ - t″) b2,0 (t″) = t′ b2,0 (t′) in Eqs. 44 45 as I have done, the final results are the same that are obtained using the complete expression for the time derivatives of the integrals.
-
In both Eqs. 44 45 one encounters terms of the form t′ 0t d t″ δ (t′ - t″) b2,0 (t″) = t′ [b2,0 (t′) Θ (t- t′) Θ (t′)] =Θ (t- t′) Θ (t′) t′ b2,0 (t′) - b2,0 (t) δ (t- t′) Θ (t′) + b2,0 (0) Θ (t- t′) δ (t′). It can be shown, however, that if one simply sets t′ 0t d t″ δ (t′ - t″) b2,0 (t″) = t′ b2,0 (t′) in Eqs. 44 45 as I have done, the final results are the same that are obtained using the complete expression for the time derivatives of the integrals.
-
-
-
|