메뉴 건너뛰기




Volumn 52, Issue 2, 2007, Pages 821-839

Learning and approximate inference in dynamic hierarchical models

Author keywords

Dynamic linear model; Expectation propagation; Maximum likelihood estimation; Time series; Variational approximation

Indexed keywords

APPROXIMATION THEORY; LEARNING ALGORITHMS; MAXIMUM LIKELIHOOD ESTIMATION; TIME SERIES ANALYSIS;

EID: 35248866961     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2007.01.001     Document Type: Article
Times cited : (4)

References (25)
  • 1
    • 35248870512 scopus 로고    scopus 로고
    • Aguilar, O., West, M., 1998. Analysis of hospital quality monitors using hierarchical time series models. In: Case Studies Bayesian Statistics in Science and Technology: Case Studies, vol. 4. Springer, New York.
  • 2
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • Bakker B., and Heskes T. Task clustering and gating for Bayesian multitask learning. J. Mach. Learn. Res. 4 (2003) 83-99
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 3
    • 35248881424 scopus 로고    scopus 로고
    • Beal, M., Ghahramani, Z., 2003. The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. In: Bayesian Statistics, vol. 7. Oxford University Press, Oxford, pp. 453-464.
  • 4
    • 35248874681 scopus 로고    scopus 로고
    • Boyen, X., Koller, D., 1998. Tractable inference for complex stochastic processes. Proc. 14th Conf. on Uncertainty in Artificial Intelligence, pp. 33-42.
  • 5
    • 0142045945 scopus 로고    scopus 로고
    • Comparison of seasonal estimation methods in multi-item short-term forecasting
    • Bunn D., and Vassilopoulos A. Comparison of seasonal estimation methods in multi-item short-term forecasting. Internat. J. Forecasting 15 (1999) 431-443
    • (1999) Internat. J. Forecasting , vol.15 , pp. 431-443
    • Bunn, D.1    Vassilopoulos, A.2
  • 6
    • 35248859625 scopus 로고    scopus 로고
    • Discrete mixture alternatives to dynamic hierarchical models
    • Camargo E., and Gamerman D. Discrete mixture alternatives to dynamic hierarchical models. Estadistica 52 (2000) 39-77
    • (2000) Estadistica , vol.52 , pp. 39-77
    • Camargo, E.1    Gamerman, D.2
  • 7
    • 0039494991 scopus 로고    scopus 로고
    • Bayesian forecasting of multinomial time series through conditionally Gaussian dynamic models
    • Cargnoni C., Müller P., and West M. Bayesian forecasting of multinomial time series through conditionally Gaussian dynamic models. J. Amer. Statist. Assoc. 92 (1997) 640-647
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 640-647
    • Cargnoni, C.1    Müller, P.2    West, M.3
  • 9
    • 35248882345 scopus 로고    scopus 로고
    • Gaffney, S., Smyth, P., 1999. Trajectory clustering using mixtures of regression models. In: Proc. of the ACM SIGKDD Conf., pp. 63-72.
  • 11
    • 35248842328 scopus 로고    scopus 로고
    • Ghahramani, Z., Jordan, M., 1996. Factorial hidden Markov models. In: Touretzky, D., Mozer, M., Hasselmo, M. (Eds.), Advances in Neural Information Processing Systems, vol. 8. MIT Press, Cambridge, MA, pp. 472-478.
  • 13
    • 35248827521 scopus 로고    scopus 로고
    • Haykin, S. (Ed.), 2001. Kalman Filtering and Neural Networks. Wiley, Canada.
  • 14
    • 35248812838 scopus 로고    scopus 로고
    • Heskes, T., Zoeter, O., 2002. Expectation propagation for approximate inference in dynamic Bayesian networks. In: Darwiche, A., Friedman, N. (Eds.), Proc. UAI-2002, pp. 216-223.
  • 15
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • Jaakkola T., and Jordan M. Bayesian parameter estimation via variational methods. Statist. Comput. 10 (2000) 25-37
    • (2000) Statist. Comput. , vol.10 , pp. 25-37
    • Jaakkola, T.1    Jordan, M.2
  • 16
    • 84864050705 scopus 로고    scopus 로고
    • Johnson, J., Malioutov, D., Willsky, A., 2006. Walk-sum interpretation and analysis of Gaussian belief propagation. In: Saul, L., Weiss, Y., Bottou, L., (Eds.), Advances in Neural Information Processing Systems, vol. 18. The MIT Press, Cambridge, MA, pp. 579-586.
  • 17
    • 0003232065 scopus 로고
    • Bayes estimates for the linear model
    • Lindley D., and Smith A. Bayes estimates for the linear model. J. Roy. Statist. Soc. B 34 (1972) 1-41
    • (1972) J. Roy. Statist. Soc. B , vol.34 , pp. 1-41
    • Lindley, D.1    Smith, A.2
  • 18
    • 35248868205 scopus 로고    scopus 로고
    • Minka, T., 2001. Expectation propagation for approximate Bayesian inference. In: Uncertainty in Artificial Intelligence: Proc. of the 17th Conf. (UAI-2001), San Francisco, CA. Morgan Kaufmann Publishers, Los Altos, CA, pp. 362-369.
  • 20
    • 0001098534 scopus 로고
    • EM and beyond
    • Rubin D.B. EM and beyond. Psychometrika 56 2 (1991) 241-254
    • (1991) Psychometrika , vol.56 , Issue.2 , pp. 241-254
    • Rubin, D.B.1
  • 21
    • 84898995769 scopus 로고    scopus 로고
    • Smyth, P., 1997. Clustering sequences with hidden Markov models. In: Mozer, M., Jordan, M., Petsche, T. (Eds.), Advances in Neural Information Processing Systems, vol. 9. The MIT Press, Cambridge, MA, pp. 648-654.
  • 22
    • 0037516827 scopus 로고    scopus 로고
    • Tree-based reparameterization framework for analysis of sum-product and related algorithms
    • Wainwright M., Jaakkola T., and Willsky A. Tree-based reparameterization framework for analysis of sum-product and related algorithms. IEEE Trans. Inform. Theory 49 5 (2003) 1120-1146
    • (2003) IEEE Trans. Inform. Theory , vol.49 , Issue.5 , pp. 1120-1146
    • Wainwright, M.1    Jaakkola, T.2    Willsky, A.3
  • 23
    • 0011952756 scopus 로고    scopus 로고
    • Correctness of belief propagation in Gaussian graphical models of arbitrary topology
    • Weiss Y., and Freeman W. Correctness of belief propagation in Gaussian graphical models of arbitrary topology. Neural Comput. 13 (2001) 2173-2200
    • (2001) Neural Comput. , vol.13 , pp. 2173-2200
    • Weiss, Y.1    Freeman, W.2
  • 24
    • 35248858231 scopus 로고    scopus 로고
    • West, M., Harrison, J. (Eds.), 1997. Bayesian Forecasting and Dynamic Models. Springer, New York.
  • 25
    • 0032390647 scopus 로고    scopus 로고
    • Semiparametric stochastic mixed models for longitudinal data
    • Zhang D., Lin X., Raz J., and Sowers M. Semiparametric stochastic mixed models for longitudinal data. J. Amer. Statist. Assoc. 93 (1998) 710-719
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 710-719
    • Zhang, D.1    Lin, X.2    Raz, J.3    Sowers, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.