메뉴 건너뛰기




Volumn 2687, Issue , 2003, Pages 512-519

A comparative study of fuzzy classifiers on breast cancer data

Author keywords

[No Author keywords available]

Indexed keywords

BREAST CANCER; BREAST CANCER DATA; BREAST TUMOR; COMPARATIVE STUDIES; COMPLEX PROBLEMS; CROSS-VALIDATION TECHNIQUE; FUZZY CLASSIFIERS; TEST PATTERN; TIME-CONSUMING TUNING; WISCONSIN; RULE GENERATION METHOD;

EID: 35248862018     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-44869-1_65     Document Type: Review
Times cited : (6)

References (19)
  • 1
    • 0032218773 scopus 로고    scopus 로고
    • A Study on Generating Classification Rules Using Histogram
    • Edited by Jain L.C., and Jain, R.K.
    • Ishibuchi, H., and Nakashima, T., A Study on Generating Classification Rules Using Histogram Edited by Jain L.C., and Jain, R.K., KES'98, pp. 132-140
    • KES'98 , pp. 132-140
    • Ishibuchi, H.1    Nakashima, T.2
  • 3
    • 0008695180 scopus 로고
    • Artificial Neural networks and Breast Cancer Prognosis
    • DeSilva, C.J.S. et al. Artificial Neural networks and Breast Cancer Prognosis The Australian Computer Journal, 26, pp. 78-81,(1994)
    • (1994) The Australian Computer Journal , vol.26 , pp. 78-81
    • DeSilva, C.J.S.1
  • 5
    • 0026120754 scopus 로고
    • Using Fuzzy Sets to Diagnose Coronary Artery Stenois
    • Cios, K.J., et.al. Using Fuzzy Sets to Diagnose Coronary Artery Stenois, IEEE Computer, pp. 57-63, (1991)
    • (1991) IEEE Computer , pp. 57-63
    • Cios, K.J.1
  • 7
    • 0029492981 scopus 로고
    • A fuzzy classifier system that generates fuzzy if-then rules for pattern classification problems
    • Ishibuchi, H. et.al, A fuzzy classifier system that generates fuzzy if-then rules for pattern classification problems, Proc. Int. Conf. Evolutionary Computat. Perth, Australia, vol. 2, pp. 759-764, (1995)
    • (1995) Proc. Int. Conf. Evolutionary Computat. Perth, Australia , vol.2 , pp. 759-764
    • Ishibuchi, H.1
  • 8
    • 0026927426 scopus 로고
    • Multilayer perceptron, fuzzy sets, and classification
    • Pal, S. K. and Mitra, S. Multilayer perceptron, fuzzy sets, and classification, IEEE Trans. on Neural Networks, 3, no. 5, pp. 683-697, (1992)
    • (1992) IEEE Trans. on Neural Networks , vol.3 , Issue.5 , pp. 683-697
    • Pal, S.K.1    Mitra, S.2
  • 9
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data
    • Nauck, D., and Kruse, R., A neuro-fuzzy method to learn fuzzy classification rules from data, Fuzzy Sets and Systems, vol. 89, pp. 277-288, (1997)
    • (1997) Fuzzy Sets and Systems , vol.89 , pp. 277-288
    • Nauck, D.1    Kruse, R.2
  • 10
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • Ishibuchi, H., Nozaki, K., Yamamoto, N., and Tanaka, H., Selecting fuzzy if-then rules for classification problems using genetic algorithms, IEEE Trans. on Fuzzy Systems, vol. 3, no. 3, pp. 260-270, (1995)
    • (1995) IEEE Trans. on Fuzzy Systems , vol.3 , Issue.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 12
    • 0030283584 scopus 로고    scopus 로고
    • A genetic algorithm for generating fuzzy classification rules
    • Yuan, Y., and Zhuang, H., A genetic algorithm for generating fuzzy classification rules, Fuzzy Sets and Systems, vol. 84, no. 1, pp. 1-19, (1996)
    • (1996) Fuzzy Sets and Systems , vol.84 , Issue.1 , pp. 1-19
    • Yuan, Y.1    Zhuang, H.2
  • 13
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification
    • Ishibuchi, H., Nozaki, K., and Tanaka, H., Distributed representation of fuzzy rules and its application to pattern classification, Fuzzy Sets and Systems, vol. 52, no. 1, pp. 21-32, (1992)
    • (1992) Fuzzy Sets and Systems , vol.52 , Issue.1 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 17
    • 0028387314 scopus 로고
    • Genetic and evolutionary algorithms come of age
    • Goldberg, D.E., Genetic and evolutionary algorithms come of age. Communications of the ACM, vol. 37, No. 3, pp. 113-119, (1994)
    • (1994) Communications of the ACM , vol.37 , Issue.3 , pp. 113-119
    • Goldberg, D.E.1
  • 19
    • 0008935872 scopus 로고
    • Neural network training via linear programming
    • P. M. Pardalos, editor, Elsevier Science
    • Bennett, K.,P., and Mangasarian, O.L., Neural network training via linear programming. In P. M. Pardalos, editor, Advances in Optimization and Parallel Computing, pages 56-57. Elsevier Science, 1992
    • (1992) Advances in Optimization and Parallel Computing , pp. 56-57
    • Bennett, K.P.1    Mangasarian, O.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.