메뉴 건너뛰기




Volumn 2712, Issue , 2003, Pages 75-94

Quantization techniques for similarity search in high-dimensional data spaces

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; VECTOR QUANTIZATION;

EID: 35248857450     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45073-4_8     Document Type: Article
Times cited : (2)

References (20)
  • 1
    • 0034592785 scopus 로고    scopus 로고
    • Using the fractal dimension to cluster data sets
    • D. Barbara and P. Chen. Using the fractal dimension to cluster data sets. In Proc. of the 6th KDDM, pages 260-264, 2000.
    • (2000) Proc. of the 6th KDDM , pp. 260-264
    • Barbara, D.1    Chen, P.2
  • 2
    • 0033897520 scopus 로고    scopus 로고
    • Independent quantization: An index compression technique for high-dimensional data spaces
    • S. Berchtold, C. Böhm, H. V. Jagadish, H.-P. Kriegel, and J. Sander. Independent quantization: An index compression technique for high-dimensional data spaces. In Proc. of the 16th ICDE, pages 577-588, 2000.
    • (2000) Proc. of the 16th ICDE , pp. 577-588
    • Berchtold, S.1    Böhm, C.2    Jagadish, H.V.3    Kriegel, H.-P.4    Sander, J.5
  • 3
    • 0032094513 scopus 로고    scopus 로고
    • The pyramid-technique: Towards breaking the curse of dimensionality
    • S. Berchtold, C. Böhm, and H.-P. Kriegel. The pyramid-technique: towards breaking the curse of dimensionality. In Proc. of ACM SIGMOD Int. Conf., pages 142-153, 1998.
    • (1998) Proc. of ACM SIGMOD Int. Conf. , pp. 142-153
    • Berchtold, S.1    Böhm, C.2    Kriegel, H.-P.3
  • 4
    • 0001802606 scopus 로고    scopus 로고
    • The X-tree: An index structure for high-dimensional data
    • S. Berchtold, D. Keim, and H.-P. Kriegel. The X-tree: An index structure for high-dimensional data. In Proc. of the 22nd VLDB, pages 28-39, 1996.
    • (1996) Proc. of the 22nd VLDB , pp. 28-39
    • Berchtold, S.1    Keim, D.2    Kriegel, H.-P.3
  • 6
    • 0039301636 scopus 로고    scopus 로고
    • A cost model for query processing in high-dimensional data spaces
    • C. Böhm. A cost model for query processing in high-dimensional data spaces. ACM Transactions on Database Systems, 25:129-178, 2000.
    • (2000) ACM Transactions on Database Systems , vol.25 , pp. 129-178
    • Böhm, C.1
  • 7
    • 0038670812 scopus 로고    scopus 로고
    • Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases
    • C. Böhm, S. Berchtold, and D. Keim. Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Comp. Surveys, 33(3):322-373, 2001.
    • (2001) ACM Comp. Surveys , vol.33 , Issue.3 , pp. 322-373
    • Böhm, C.1    Berchtold, S.2    Keim, D.3
  • 8
    • 0005287692 scopus 로고    scopus 로고
    • Local dimensionality reduction: A new approach to indexing high dimensional spaces
    • K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new approach to indexing high dimensional spaces. In The VLDB Journal, pages 89-100, 2000.
    • (2000) The VLDB Journal , pp. 89-100
    • Chakrabarti, K.1    Mehrotra, S.2
  • 9
    • 0036373172 scopus 로고    scopus 로고
    • Fractal prefetching b+-trees: Optimizing both cache and disk performance
    • S. Chen, P. Gibbons, T. Mowry, and G. Valentin. Fractal prefetching b+-trees: Optimizing both cache and disk performance. Proc. of ACM SIGMOD Int. Conf., pages 157-168, 2002.
    • (2002) Proc. of ACM SIGMOD Int. Conf. , pp. 157-168
    • Chen, S.1    Gibbons, P.2    Mowry, T.3    Valentin, G.4
  • 12
    • 0000014486 scopus 로고
    • Cluster analysis for multivariate data: Efficiency vs. interpretability of classifications
    • E. Forgy. Cluster analysis for multivariate data: Efficiency vs. interpretability of classifications. Biometrics, 21, 1965.
    • (1965) Biometrics , vol.21
    • Forgy, E.1
  • 13
    • 0032083561 scopus 로고    scopus 로고
    • Multidimensional access methods
    • V. Gaede and O. Günther. Multidimensional access methods. ACM Comp. Surveys, 30(2):170-231, 1998.
    • (1998) ACM Comp. Surveys , vol.30 , Issue.2 , pp. 170-231
    • Gaede, V.1    Günther, O.2
  • 16
    • 0031162081 scopus 로고    scopus 로고
    • The SR-tree: An index structure for high-dimensional nearest neighbor queries
    • N. Katayama and S. Satoh. The SR-tree: an index structure for high-dimensional nearest neighbor queries. In Proc. of ACM SIGMOD Int. Conf., pages 369-380, 1997.
    • (1997) Proc. of ACM SIGMOD Int. Conf. , pp. 369-380
    • Katayama, N.1    Satoh, S.2
  • 18
    • 0344775426 scopus 로고    scopus 로고
    • The A-tree: An index structure for high-dimensional spaces using relative approximation
    • Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-tree: An index structure for high-dimensional spaces using relative approximation. In Proc. of the 26th VLDB, pages 516-526, 2000.
    • (2000) Proc. of the 26th VLDB , pp. 516-526
    • Sakurai, Y.1    Yoshikawa, M.2    Uemura, S.3    Kojima, H.4
  • 20
    • 0000681228 scopus 로고    scopus 로고
    • A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
    • R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In Proc. of the 24th VLDB, pages 194-205, 24-27 1998.
    • (1998) Proc. of the 24th VLDB , pp. 194-205
    • Weber, R.1    Schek, H.-J.2    Blott, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.